Advertisement

Determination of Atmospheric Volatile and Semi-volatile Compounds

  • Ravindra KhaiwalEmail author
Chapter
  • 911 Downloads

Abstract

Volatile organic compounds (VOCs) are normally present in the vapor phase at room temperature (vapor pressure greater than 0.1 mmHg [0.0133 kPa] at 25°C). Compounds less volatile are known as semi-volatile organic compounds (SVOCs). SVOCs may be present in the atmosphere in the vapor phase, but are more normally associated with aerosol, either as dusts or liquid droplets (Lodge 1991; Kouimtzis and Samara 1995; Harper 2000). There is growing concern over the VOCs/SVOCs present in the atmosphere. Some of them play a major role in defining atmospheric chemistry and processes. Several short chain hydrocarbons affect the formation of ozone and other photochemical oxidants. Other VOCs/SVOCs play a role in stratospheric ozone depletion, tropospheric photochemical ozone formation and enhancement of the “greenhouse effect.” Further, many of VOCs/SVOCs are known for their carcinogenic and mutagenic properties (Ravindra et al. 2001, 2008a). The World Health Organization has estimated that urban air pollution contributes each year to approximately 800,000 death and 4.6 million lost life-years worldwide (World Health Organization 2002). These consequences require a priority to identify and chemically characterize the atmospheric pollutants and especially those attached to the fine and ultra fine fraction of airborne particles (Ravindra et al. 2008b). This will help us to understand their possible implications for human health and also their environmental distribution and fate.

Keywords

High Performance Liquid Chromatography Supercritical Fluid Supercritical Fluid Extraction Microwave Assisted Extraction Pressurize Liquid Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexandrou, N., M. Smith, R. Park, K. Lumb, K.A. Brice, 2001: The extraction of polycyclic aromatic hydrocarbons from atmospheric particulate matter samples by accelerated solvent extraction (ASE), International Journal of Environmental Analytical Chemistry, 81, 257–280.CrossRefGoogle Scholar
  2. Arditsoglou, A., E. Terzi, M. Kalaitzoglou, C. Samara, 2003: A comparative study on the recovery of polycyclic aromatic hydrocarbons from fly ash and lignite coal. Environ. Sci. Poll. Res. 10, pp. 354.CrossRefGoogle Scholar
  3. Bautz, H., J. Polzer, L. Stieglitz, 1998: Comparison of pressurized liquid extraction with Soxhlet extraction for the analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans from fly ash and environmental matrices. J. Chromatogr. A 815, pp. 231.CrossRefGoogle Scholar
  4. Berset, J.D., M. Ejem, R. Holzer, P. Lischer, 1999: Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Anal. Chim. Acta 383, pp. 263.CrossRefGoogle Scholar
  5. Bøwadt, S., S.B. Hawthorne, 1995: Supercritical fluid extraction in environmental analysis. J. Chrom. A 703, pp. 549.CrossRefGoogle Scholar
  6. Brumley, W.C., E. Latorre, V. Kelliher, A. Marcus, D.E. Knowles, 1998: Determination of chlordane in soil by LC/GC/ECD and LC/GC/EC NIMS with comparison of ASE, SFE, and Soxhlet extraction. J. Liq. Chrom. Relat. Tech. 21, pp. 1199.CrossRefGoogle Scholar
  7. Camel, V., M. Caude, 1995: Trace enrichment methods for the determination of organic pollutants in ambient air. J Chrom. A 710, p. 3.CrossRefGoogle Scholar
  8. Cheremisinoff, P.N., 1981: Air/Particulate Instrumentation and Analysis. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
  9. Coutant, R.W., L. Brown, J.C. Chuang, R.M. Riggin, R.G. Lewis, 1988: Phase distribution and artifact formation in ambient air sampling for polynuclear aromatic hydrocarbons. Atmos. Environ. 22, pp. 403.CrossRefGoogle Scholar
  10. Coutant, R.W., P.J. Callahan, M.R. Kuhlman, R.G. Lewis, 1989: Design and performances of a high volume compound annular denuder. Atmos. Environ. 23, pp. 2205.CrossRefGoogle Scholar
  11. Coutant, R.W., P.J. Callahan, J.C. Chuang, R.G. Lewis, 1992: Efficiency of silicone-grease coated denuders for collection of polynuclear aromatic hydrocarbons. Atmos. Environ. 26A, pp. 2831.Google Scholar
  12. David, M.D., J.N. Seiber, 1996: Comparison of extraction techniques, including supercritical fluid, high-pressure solvent, and Soxhlet, for organophosphorus hydraulic fluids from soil. Anal. Chem. 68, pp. 3038.CrossRefGoogle Scholar
  13. Dean J.R., 1996: Extraction of polycyclic aromatic hydrocarbons from environmental matrices: practical considerations for supercritical fluid extraction Analyst 121, pp. 85R.Google Scholar
  14. Dean, J.R., 1998: Extraction methods for environmental analysis. Wiley, Chichester, Chapter 6–10, pp. 99.Google Scholar
  15. Dewulf, J., H.V. Langenhove, G. Wittmann, 2002: Analysis of volatile organic compounds using gas chromatography. Trends Anal. Chem. 21, pp. 637.CrossRefGoogle Scholar
  16. Dionex, 1998: Technical note 208, Method optimization in accelerated solvent extraction, 20.Google Scholar
  17. Doong, R., S. Chang, Y. Sun, 2000: Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J. Chrom. A 879, pp. 177.CrossRefGoogle Scholar
  18. Godoi, A.F.L., K. Ravindra, R.H.M. Godoi, S.J. Andrade, M. Santiago-Silva, L. van Vaeck, R. van Grieken, 2004: Fast chromatographic determination of polycyclic aromatic hydrocarbons in aerosol samples from sugar cane burning. Journal of Chromatography A, 1027, pp. 49–53.CrossRefGoogle Scholar
  19. Goriaux M., B. Jourdain, B. Temime, J.-L. Besombes, N. Marchand, A. Albinet, E. Leoz-Garziandia, H. Wortham, 2006: Field comparison of PAH measurements using a low flow denudeur device and conventional sampling systems. Environ. Sci. Tech. 40, pp. 6398.CrossRefGoogle Scholar
  20. Harper M., 2000: Sorbent trapping of volatile organic compounds from air. J. Chrom. A, 885, pp. 129.CrossRefGoogle Scholar
  21. Heemken, O.P., N. Theobald, B.W. Wenclawiak, 1997: Comparison of ASE and SFE with Soxhlet, sonication, and methanolic saponification extractions for the determination of organic micropollutants in marine particulate matter. Anal. Chem. 69, pp. 2171.CrossRefGoogle Scholar
  22. Kebbekus, B.B., S. Mitra, 1998: Environmental Chemical Analysis. Blackie Academic & Professional, London, UK.Google Scholar
  23. Kouimtzis, T., C. Samara, 1995: The Handbook of Environmental Chemistry: Airborne Particulate Matter (Volume 4, Part D). Springer, Heidelberg, Germany.Google Scholar
  24. Kumar, A., I. Víden, 2007: Volatile organic compounds: sampling methods and their worldwide profile in ambient air. Environ. Monit. Assess. 131, pp. 301.Google Scholar
  25. Lane, D.A., L. Gundel, 1996: Gas and particle sampling of airborne polycyclic aromatic compounds. Polycyclic Aromat. Compd. 9, pp. 67.CrossRefGoogle Scholar
  26. Letellier M., Budzinski H., 1999: Microwave assisted extraction of organic compounds. Analysis, 27, pp. 259.CrossRefGoogle Scholar
  27. Lodge, J.P., 1991: Method of air sampling and analysis, 3rd edition. Lewis Publishers, Chelsea.Google Scholar
  28. Lundstedt, S., B. van Bavel, P. Haglund, M. Tysklind, L. Öberg, 2000: Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils. J. Chrom. A 883, pp. 151.Google Scholar
  29. Majors, R.E., 1995: Trends in sample preparation and automation – what the experts are saying (http://www.sampleprep.duq.edu/lcgc_sp.html). LC/GC 13, pp. 742–749.Google Scholar
  30. Mandal, V., Y. Mohan, S. Hemalatha, 2007: Microwave assisted extraction – an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Rev. 1, pp. 7.Google Scholar
  31. Martinez, E., M. Gros, S. Lacorte, D. Barceló, 2004: Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. J. Chrom. A 1047, pp. 181.Google Scholar
  32. Pawliszyn, J., 1997: Solid phase microextraction: theory and practice, Wiley-VCH, New York.Google Scholar
  33. Popp, P., P. Keil, M. Möder, A. Paschke, U. Thuss, 1997: Application of accelerated solvent extraction followed by gas chromatography, high-performance liquid chromatography and gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans in solid wastes. J. Chrom. A 774, pp. 203.CrossRefGoogle Scholar
  34. Prichard, E., 1997: Quality in the Analytical Chemistry Laboratory. Wiley, West Sussex, UK.Google Scholar
  35. Ravindra, K., 2006: Polycyclic Aromatic Hydrocarbons in the Atmosphere: Fast Determination, Concentrations, Sources and Health Risks, (ISBN: 90-5728-065-5), pp. 1–205. University of Antwerp, Antwerp, Belgium.Google Scholar
  36. Ravindra, K., A.K. Mittal, R. Van Grieken, 2001: Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Rev. Environ. Health 16, pp. 169.CrossRefGoogle Scholar
  37. Ravindra, K., R.S. Sokhi, R. Van Grieken, 2008a: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, pp. 2895.CrossRefGoogle Scholar
  38. Ravindra, K., M. Stranger, R. Van Grieken, 2008b: Chemical characterization and multivariate analysis of atmospheric PM2.5 particles. J. Atmos. Chem. 59, pp. 199.CrossRefGoogle Scholar
  39. Ravindra, K., E. Wauters, R. Van Grieken, 2008c: Variation in particulate PAHs levels and their relation with the transboundary movement of air masses. Sci. Total Environ. 396, pp. 100.CrossRefGoogle Scholar
  40. Ravindra, K., A. Dirtu, A. Covaci, 2008d: Low pressure – gas chromatography: recent trends and developments. Trends Anal. Chem. 27, pp. 291.CrossRefGoogle Scholar
  41. Richter, B.E., B.A. Jones, J.L. Ezzell, N.L. Porter, N. Avdalovic, C. Pohl, 1996: Accelerated solvent extraction: a technique for sample preparation. Anal. Chem. 68, pp. 1033.CrossRefGoogle Scholar
  42. Richter, B.E., J.L. Ezzell, D.E. Knowles, F. Hoefler, A.K.R. Mattulat, M. Scheutwinkel, D.S. Waddell, T. Gobran, V. Khurana, 1997: extraction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from environmental samples using accelerated solvent extraction (ASE). Chemosphere 34, pp. 975.CrossRefGoogle Scholar
  43. Schantz, M.M., J.J. Nichols, S.A. Wise, 1997: Evaluation of pressurized fluid extraction for the extraction of environmental matrix reference materials. Anal. Chem. 69, 4210.CrossRefGoogle Scholar
  44. Schauer, C., R. Niessner, U. Poschl, 2003: Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends, chemical degradation and sampling artifacts. Environ. Sci. Tech. 37, pp. 2861.CrossRefGoogle Scholar
  45. Srogi, K., 2006: A review: application of microwave techniques for environmental analytical chemistry. Anal. Lett. 39, pp. 1261.CrossRefGoogle Scholar
  46. Swartz, M.E., I.S. Krull, 1997: Analytical Method Development and Validation. Marcel Dekker, New York.Google Scholar
  47. Tsapakis, M., E.G. Stephanou, 2003: Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos. Environ. 37, pp. 4935.CrossRefGoogle Scholar
  48. Vo-Dinh T., J. Fetzer, A.D. Campiglia, 1998: Monitoring and characterization of polyaromatic compounds in the environment. Talanta 47, pp. 943.CrossRefGoogle Scholar
  49. World Health Organization, 2002: The World Health Report: Reducing Risks, Promoting Healthy Life. World Health Organization, Geneva.Google Scholar
  50. Zubrick, J.W., 1997: The Organic Chem Lab Survival Manual, 4th edition. Wiley, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Atmospheric and Instrumentation Research (CAIR)University of HertfordshireHatfieldUK

Personalised recommendations