Skip to main content

On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus

  • Chapter
  • First Online:
Computational Approach to Riemann Surfaces

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2013))

Abstract

There are several well-known ways to introduce a compact Riemann surface which are also discussed in the present volume, e.g., via algebraic equations or by means of some uniformization theorem, where the surface is introduced as the quotient of the upper half-plane over the action of a Fuchsian group. In this chapter we consider a less popular approach which is at the same time, perhaps, the most elementary: one can simply consider the boundary of a connecter (but, generally, not simply connected) polyhedron in three dimensional Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurell, E., Salomonson, P.: Further Results on Functional Determinants of Laplacians in Simplicial Complexes, hep-th/9405140

    Google Scholar 

  2. Bobenko, A.I.: Introduction to compact Riemann surfaces. In: Bobenko, A.I., Klein, Ch. (eds.) Lecture Notes in Mathematics 2013, pp. 3–64. Springer, Berlin (2011)

    Google Scholar 

  3. Burghelea, D., Friedlander, L., Kappeler, T.: Meyer-Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107, 34–65 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carslaw, H.S.: The Green’s function for a wedge of any angle, and other problems in the conduction of heat. Proc. Lond. Math. Soc. 8, 365–374 (1910)

    Article  Google Scholar 

  5. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Diff. Geom. 18, 575–657 (1983)

    MATH  MathSciNet  Google Scholar 

  6. D’Hoker, E., Phong, D.H.: Functional determinants on Mandelstam diagrams. Comm. Math. Phys. 124, 629–645 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fay, J.D.: Theta-functions on Riemann surfaces. Lect. Notes in Math., vol. 352. Springer, Berlin (1973)

    Google Scholar 

  8. Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoir. AMS 464 (1992)

    Google Scholar 

  9. Fursaev, D.V.: The heat-kernel expansion on a cone and quantum fields near cosmic strings. Class. Quant. Grav. 11, 1431–1443 (1994)

    Article  MathSciNet  Google Scholar 

  10. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  11. King, h.K.: Determinants of Laplacians on the space of conical metrics on the sphere. Trans. AMS 339, 525–536 (1993)

    Google Scholar 

  12. Klochko, Y., Kokotov, A.: Genus one polyhedral surfaces, spaces of quadratic differentials on tori and determinants of Laplacians. Manuscripta Math. 122, 195–216 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kokotov, A., Korotkin, D.: Tau-functions on the spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, preprint of the Max-Planck Institute for Mathematics in the Science, Leipzig, 46/2004; math.SP/0405042

    Google Scholar 

  14. Kokotov, A.: Preprint (127) of Max-Planck-Institut für Mathematik in Bonn (2007)

    Google Scholar 

  15. Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula. J. Differ. Geom. 82, 35–100 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Kondratjev, V.: Boundary value problems for elliptic equations in domains with conical and angle points. Proc. Moscow Math. Soc. 16, 219–292 (1967)

    Google Scholar 

  17. Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of holomorphic differentials with prescribed singularities. Invent. Math. 153, 631–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kontsevitch, M., Zorich A.: Lyapunov exponents and Hodge theory, hep-th/9701164

    Google Scholar 

  19. Loya, P., McDonald, P., Park, J.: Zeta regularized determinants for conic manifolds. J. Funct. Anal. 242(1), 195–229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1, 43–69 (1967)

    MATH  MathSciNet  Google Scholar 

  21. Mooers, E.: Heat kernel asymptotics on manifolds with conic singularities. J. D’Analyse Mathématique, 78, 1–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nazarov, S., Plamenevskii, B.: Elliptic boundary value problems in domains with piece-wise smooth boundary, Moscow, “Nauka” (1992)

    Google Scholar 

  23. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of laplacian. J. Funct. Anal. 80(1), 148–211 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ray D.B., Singer I.M.: Analytic torsion for complex manifolds. Ann. Math. 98(1), 154–177 (1973)

    Article  MathSciNet  Google Scholar 

  25. Taylor, M.: Partial Differential Equations, vol. 2. Springer, New York (1996) (Appl. Math. Sci., 116)

    Google Scholar 

  26. Troyanov, M.: Les surfaces euclidiennes à singularités coniques. L’Enseignement Mathématique, 32, 79–94 (1986)

    MATH  MathSciNet  Google Scholar 

  27. Zorich, A.: Flat Surfaces. In Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number theory, Physics and Geometry. Vol. 1: On random matrices, zeta functions, and dynamical systems, pp. 439–586. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kokotov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kokotov, A. (2011). On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus. In: Bobenko, A., Klein, C. (eds) Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics(), vol 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17413-1_8

Download citation

Publish with us

Policies and ethics