Skip to main content

Computing Poincaré Theta Series for Schottky Groups

  • Chapter
  • First Online:
Computational Approach to Riemann Surfaces

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2013))

Abstract

Common numerical methods represent Riemann surfaces through algebraic curves, see Chaps. 2 and 3. This seems natural because algebraic curves can be used to define a Riemann surface, but this approach has some serious disadvantages: if one is interested in the corresponding Riemann surface only, one needs to factorize algebraic curves with respect to birational maps. This complicates the corresponding parameterization of Riemann surfaces. Moreover, a representation of a Riemann surfaces as a ramified multi-sheeted covering complicates the description of homology and integration paths, which leads to complex algorithms. Schottky uniformization (see Chap. 1) is attractive alternative to describing Riemann surfaces in terms of algebraic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, H.F.: Abelian functions. Abel’s theorem and the allied theory of theta functions, Reprint of the 1897 original, xxxvi+684 pp. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  2. Bobenko, A.I.: All constant mean curvature tori in R 3, S 3, H 3 in terms of theta-functions. Math. Ann. 290, 209–245 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bobenko, A.I.: Exploring Surfaces through Methods from the Theory of Integrable Systems: The Bonnet Problem, In: Surveys on Geometry and Integrable Systems. Advanced Studies in Pure Mathematics, vol. 51, pp. 1–51 (2008)

    MathSciNet  Google Scholar 

  4. Bobenko, A.I.: Introduction to compact Riemann surfaces. In: Bobenko, A.I., Klein, Ch. (eds.) Lecture Notes in Mathematics 2013, pp. 3–64. Springer, Berlin (2011)

    Google Scholar 

  5. Burnside, W.: On a class of automorphic functions. Proc. Lond. Math. Soc. 23, 49–88, 281–295 (1892)

    Google Scholar 

  6. Ford, L.R.: Automorphic Functions, vii+333 pp. McGraw-Hill, New York (1929)

    Google Scholar 

  7. Fricke, R., Klein, F.: Vorlesungen über die Theorie der automorphen Funktionen. Johnson Reprint Corp., New York; B.G. Teubner Verlagsgesellschaft, Stuttgart (1965), xiv+634 pp., xiv+668 pp.

    Google Scholar 

  8. Heil, M.: Numerical Tools for the study of finite gap solutions of integrable systems, PhD thesis, Technische Universität Berlin, 1995

    Google Scholar 

  9. Schmies, M.: Computational methods for Riemann surfaces and helicoids with handles, PhD thesis, Technische Universität Berlin, 2005, http://opus.kobv.de/tuberlin/volltexte/2005/1105/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schmies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmies, M. (2011). Computing Poincaré Theta Series for Schottky Groups. In: Bobenko, A., Klein, C. (eds) Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics(), vol 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17413-1_4

Download citation

Publish with us

Policies and ethics