Skip to main content

Bumble Bees Mating Optimization Algorithm for the Vehicle Routing Problem

  • Chapter
Handbook of Swarm Intelligence

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 8))

Abstract

Recently, a number of swarm intelligence algorithms based on the behaviour of the bees have been presented. These algorithms are divided, mainly, in two categories according to the bees’ behaviour in the nature, the foraging behaviour and the mating behaviour. The most important approaches that simulate the foraging behaviour of the bees are the Artificial Bee Colony algorithm, the Virtual Bee algorithm, the Bee Colony Optimization algorithm, the BeeHive algorithm, the Bee Swarm Optimization algorithm and the Bees algorithm. Contrary to the fact that there are many algorithms that are based on the foraging behaviour of the bees, the main algorithm proposed based on the mating behaviour is the Honey Bees Mating Optimization algorithm. This chapter introduces a new algorithmic nature inspired approach based on Bumble Bees Mating Optimization for successfully solving the Vehicle Routing Problem. Bumble Bees Mating Optimization algorithm is a new population-based swarm intelligence algorithm that simulates the mating behaviour that a swarm of bumble bees perform. Two sets of benchmark instances are used in order to test the proposed algorithm with very satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A.: A monogenous MBO approach to satisfiability. In: International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA 2001, Las Vegas, NV, USA (2001)

    Google Scholar 

  2. Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: The Congress on Evolutionary Computation (CEC 2001), Seoul, Korea, pp. 207–214 (May 2001)

    Google Scholar 

  3. Afshar, A., Haddad, O.B., Marino, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Inst 344, 452–462 (2007)

    Article  Google Scholar 

  4. Altinkemer, K., Gavish, B.: Altinkemer K., Gavish, B. Parallel savings based heuristics for the delivery problem. Oper. Res. 39(3), 456–469 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baker, B.M., Ayechew, M.A.: A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30(5), 787–800 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbarosoglu, G., Ozgur, D.: A tabu search algorithm for the vehicle routing problem. Comput. Oper. Res. 26, 255–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baykasoglu, A., Ozbakir, L., Tapkan, P.: Artificial bee colony algorithm and its application to generalized assignment problem. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Education and Publishing (2007)

    Google Scholar 

  8. Berger, J., Barkaoui, M.: A hybrid genetic algorithm for the capacitated vehicle routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, Chicago, pp. 646–656 (2003)

    Google Scholar 

  9. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11, 97–108 (1981)

    Article  Google Scholar 

  10. Bodin, L., Golden, B., Assad, A., Ball, M.: The state of the art in the routing and scheduling of vehicles and crews. Comput. Oper. Res. 10, 63–212 (1983)

    Article  MathSciNet  Google Scholar 

  11. Bullnheimer, B., Hartl, P.F., Strauss, C.: An improved ant system algorithm for the vehicle routing problem. Ann. Oper. Res. 89, 319–328 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, Wiley, Chichester (1979)

    Google Scholar 

  13. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12, 568–581 (1964)

    Article  Google Scholar 

  14. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE T Evolut. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  15. Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F.: A guide to vehicle routing heuristics. J. Oper. Res. Soc. 53, 512–522 (2002)

    Article  MATH  Google Scholar 

  16. Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New heuristics for the vehicle routing problem. In: Langevine, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization, pp. 279–298. Wiley and Sons, Chichester (2005)

    Chapter  Google Scholar 

  17. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage Sci. 6(1), 80–91 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dasgupta, D. (ed.): Artificial immune systems and their application. Springer, Heidelberg (1998)

    Google Scholar 

  19. Desrochers, M., Verhoog, T.W.: A matching based savings algorithm for the vehicle routing problem. Les Cahiers du GERAD G-89-04, Ecole des Hautes Etudes Commerciales de Montreal (1989)

    Google Scholar 

  20. Dorigo, M., Stützle, T.: Ant colony optimization. A Bradford Book. The MIT Press, Cambridge (2004)

    Book  Google Scholar 

  21. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Engelbrecht, A.P.: Computational intelligence: An introduction, 2nd edn. John Wiley and Sons, England (2007)

    Google Scholar 

  23. Fathian, M., Amiri, B., Maroosi, A.: Application of honey bee mating optimization algorithm on clustering. Appl. Math. Comput. 190, 1502–1513 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fisher, M.L.: Vehicle routing. In: Ball, M.O., Magnanti, T.L., Momma, C.L., Nemhauser, G.L. (eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 1–33. North Holland, Amsterdam (1995)

    Google Scholar 

  25. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981)

    Article  MathSciNet  Google Scholar 

  26. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle scheduling problem. Oper. Res. 27, 367–384 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Garfinkel, R., Nemhauser, G.: Integer Programming. John Wiley and Sons, New York (1972)

    MATH  Google Scholar 

  28. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem. Manage Sci. 40, 1276–1290 (1994)

    Article  MATH  Google Scholar 

  29. Gendreau, M., Laporte, G., Potvin, J.Y.: Vehicle routing: modern heuristics. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local search in Combinatorial Optimization, pp. 311–336. Wiley, Chichester (1997)

    Google Scholar 

  30. Gendreau, M., Laporte, G., Potvin, J.Y.: Metaheuristics for the Capacitated VRP. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications, pp. 129–154. SIAM, Philadelphia (2002)

    Google Scholar 

  31. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle dispatch problem. Oper. Res. 22, 240–349 (1974)

    Article  Google Scholar 

  32. Golden, B.L., Assad, A.A.: Vehicle Routing: Methods and Studies. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  33. Golden, B.L., Raghavan, S., Wasil, E.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer LLC, Heidelberg (2008)

    Book  MATH  Google Scholar 

  34. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Crainic, T.G., Laporte, G. (eds.) Fleet management and logistics, pp. 33–56. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  35. Goulson, D.: Bumblebees: Behaviour, Ecology, and Conservation. Oxford University Press, USA (2009)

    Google Scholar 

  36. Hackel, S., Dippold, P.: The bee colony-inspired algorithm (BCiA): a two stage approach for solving the vehicle routing problem with time windows. In: GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 25–32 (2009)

    Google Scholar 

  37. Haddad, O.B., Afshar, A., Marino, M.A.: Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization. Water Resour Manag. 20, 661–680 (2006)

    Article  Google Scholar 

  38. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  40. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global. Optim. 39, 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  42. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. (2009), doi:10.1007/s10462-009-9127-4

    Google Scholar 

  43. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  44. Laporte, G., Semet, F.: Classical heuristics for the capacitated VRP. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications, pp. 109–128. SIAM, Philadelphia (2002)

    Google Scholar 

  45. Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.: Classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. 7, 285–300 (2000)

    Article  MathSciNet  Google Scholar 

  46. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

    MATH  Google Scholar 

  47. Lichtblau, D.: Discrete optimization using Mathematica. In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, J.M., Lichtblau, D. (eds.) World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2002), International Institute of Informatics and Systemics, vol. 16, pp. 169–174 (2002)

    Google Scholar 

  48. Lin, S.: Computer solutions of the Traveling Salesman Problem. Bell. Syst. Tech. J. 44, 2245–2269 (1965)

    MATH  Google Scholar 

  49. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Oper. Res. 21, 498–516 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  50. Marinaki, M., Marinakis, Y., Zopounidis, C.: Honey bees mating optimization algorithm for financial classification problems. Appl. Soft. Comput. (2009) (available on line – doi: 10.1016/j.asoc.2009.09.010)

    Google Scholar 

  51. Marinakis, Y., Marinaki, M.: A hybrid honey bees mating optimization algorithm for the probabilistic traveling salesman problem. In: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway (2009)

    Google Scholar 

  52. Marinakis, Y., Marinaki, M.: A Hybrid Genetic - Particle Swarm Algorithm for the Vehicle Routing Problem. Expert Syst. Appl. 37, 1446–1455 (2010)

    Article  MathSciNet  Google Scholar 

  53. Marinakis, Y., Marinaki, M., Dounias, G.: A Hybrid Particle Swarm Optimization Algorithm for the Vehicle Routing Problem. Eng. Appl. of Artif. Intell. (accepted 2010)

    Google Scholar 

  54. Marinakis, Y., Migdalas, A.: Heuristic solutions of vehicle routing problems in supply chain management. In: Pardalos, P.M., Migdalas, A., Burkard, R. (eds.) Combinatorial and Global Optimization, pp. 205–236. World Scientific Publishing Co., Singapore (2002)

    Chapter  Google Scholar 

  55. Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the vehicle routing problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature inspired cooperative strategies for optimization - NICSO 2007, Studies in Computational Intelligence, vol. 129, pp. 139–148. Springer, Berlin (2008)

    Chapter  Google Scholar 

  56. Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for large scale vehicle routing problems. Nat. Comput. (2009) (available on line - doi: 10.1007/s11047-009-9136-x)

    Google Scholar 

  57. Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid clustering algorithm based on Honey Bees Mating Optimization and Greedy Randomized Adaptive Search Procedure. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp. 138–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  58. Marinakis, Y., Marinaki, M., Matsatsinis, N.: Honey bees mating optimization for the location routing problem. In: IEEE International Engineering Management Conference (IEMC - Europe 2008), Estoril, Portugal (2008)

    Google Scholar 

  59. Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid bumble bees mating optimization – GRASP algorithm for clustering. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 549–556. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  60. Marinakis, Y., Migdalas, A., Pardalos, P.M.: Expanding neighborhood GRASP for the traveling salesman problem. Comput. Optim. Appl. 32, 231–257 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A hybrid Genetic-GRASP algortihm using langrangean relaxation for the traveling salesman problem. J. Comb. Optim. 10, 311–326 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  62. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm. J. Global. Optim. 38, 555–580 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  63. Mester, D., Braysy, O.: Active guided evolution strategies for the large scale vehicle routing problems with time windows. Comput. Oper. Res. 32, 1593–1614 (2005)

    Article  Google Scholar 

  64. Mester, D., Braysy, O.: Active guided evolution strategies for large scale capacitated vehicle routing problems. Comput. Oper. Res. 34, 2964–2975 (2007)

    Article  MATH  Google Scholar 

  65. Mole, R.H., Jameson, S.R.: A sequential route-building algorithm employing a generalized savings criterion. Oper. Res. Quart. 27, 503–511 (1976)

    Article  Google Scholar 

  66. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for combinatorial optimization problems. Ann. Oper. Res. 41, 421–451 (1993)

    Article  MATH  Google Scholar 

  67. Pereira, F.B., Tavares, J.: Bio-inspired Algorithms for the Vehicle Routing Problem. Studies in Computational Intelligence, vol. 161. Springer, Heidelberg (2008)

    Google Scholar 

  68. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm - A novel tool for complex optimization problems. In: IPROMS 2006 Proceeding 2nd International Virtual Conference on Intelligent Production Machines and Systems. Elsevier, Oxford (2006)

    Google Scholar 

  69. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34, 2403–2435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31, 1985–2002 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  71. Prins, C.: A GRASP × Evolutionary Local Search Hybrid for the Vehicle Routing Problem. In: Pereira, F.B., Tavares, J. (eds.) Bio-inspired Algorithms for the Vehicle Routing Problem, SCI 161, pp. 35–53. Springer, Heidelberg (2008)

    Google Scholar 

  72. Reimann, M., Stummer, M., Doerner, K.: A savings based ant system for the vehicle routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, New York, pp. 1317–1326 (2002)

    Google Scholar 

  73. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: savings based ants divide and conquer the vehicle routing problem. Comput. Oper. Res. 31, 563–591 (2004)

    Article  MATH  Google Scholar 

  74. Rego, C.: A subpath ejection method for the vehicle routing problem. Manage Sci. 44, 1447–1459 (1998)

    Article  MATH  Google Scholar 

  75. Rego, C.: Node-ejection chains for the vehicle routing problem: sequential and parallel algorithms. Parallel Comput. 27, 201–222 (2001)

    Article  MATH  Google Scholar 

  76. Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1, 147–167 (1995)

    Article  MATH  Google Scholar 

  77. Taillard, E.D.: Parallel iterative search methods for vehicle routing problems. Networks 23, 661–672 (1993)

    Article  MATH  Google Scholar 

  78. Tarantilis, C.D.: Solving the vehicle routing problem with adaptive memory programming methodology. Comput. Oper. Res. 32, 2309–2327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  79. Tarantilis, C.D., Kiranoudis, C.T.: BoneRoute: an adaptive memory-based method for effective fleet management. Ann. Oper. Res. 115, 227–241 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  80. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A backtracking adaptive threshold accepting metaheuristic method for the Vehicle Routing Problem. System Analysis Modeling Simulation (SAMS) 42, 631–644 (2002)

    MATH  MathSciNet  Google Scholar 

  81. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A list based threshold accepting algorithm for the capacitated vehicle routing problem. Int. J. Comput. Math. 79, 537–553 (2002)

    Article  MATH  Google Scholar 

  82. Teo, J., Abbass, H.A.: A true annealing approach to the marriage in honey bees optimization algorithm. Int. J. Comput. Intell. Appl. 3(2), 199–211 (2003)

    Article  Google Scholar 

  83. Teodorovic, D., Dell’Orco, M.: Bee colony optimization - A cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation. Proceedings of the 16th Mini - EURO Conference and 10th Meeting of EWGT, pp. 51–60 (2005)

    Google Scholar 

  84. Toth, P., Vigo, D.: The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002)

    Google Scholar 

  85. Toth, P., Vigo, D.: The granular tabu search (and its application to the vehicle routing problem). INFORMS J. Comput. 15, 333–348 (2003)

    Article  MathSciNet  Google Scholar 

  86. Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  87. Wark, P., Holt, J.: A repeated matching heuristic for the vehicle routing problem. J. Oper. Res. Soc. 45, 1156–1167 (1994)

    MATH  Google Scholar 

  88. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  89. Xu, J., Kelly, J.P.: A new network flow-based tabu search heuristic for the vehicle routing problem. Transport Sci. 30, 379–393 (1996)

    Article  MATH  Google Scholar 

  90. Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  91. http://www.bumblebee.org

  92. http://www.everythingabout.net/articles/biology/animals/arthropods/insects/bees/bumble_bee

  93. http://bumbleboosters.unl.edu/biology.shtml

  94. http://www.colostate.edu/Depts/Entomology/courses/en570/papers_1998/walter.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marinakis, Y., Marinaki, M. (2011). Bumble Bees Mating Optimization Algorithm for the Vehicle Routing Problem. In: Panigrahi, B.K., Shi, Y., Lim, MH. (eds) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17390-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17390-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17389-9

  • Online ISBN: 978-3-642-17390-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics