Skip to main content

Interfacial Shear Strength in Lignocellulosic Fibers Incorporated Polymeric Composites

  • Chapter
  • First Online:

Abstract

Lignocellulosic fibers have been recognized as attractive fillers for different types of matrices in polymeric composites. Their advantages such as recyclability and renewability are unique characteristics for composites used as automobile components and building structural panels. In view of the hydrophobic behavior of most polymers and the hydrophilic nature of lignocellulosic fibers, poor adhesion is observed between lignocellulosic fibers and the polymeric matrix, which results in lower mechanical properties. Pullout tests have been successfully used to determine the interfacial shear stress in synthetic fiber-reinforced composites, but little has been reported in the case of lignocellulosic fiber–polymer composites. This chapter presents an overview on the determination of the interfacial strength of lignocellulosic fibers–polymer matrix composites including some obtained by the authors on Brazilian fibers such as curaua, ramie, and piassava, considered as reinforcement for composites. Concluding remarks and suggestions indicate some future works.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites. Wiley, New York

    Google Scholar 

  2. Ashbee KHG (1993) Fundamental principles of fiber reinforced composites. Technomic, Lancaster

    Google Scholar 

  3. Mallick PK (1993) Fiber-reinforced composites – materials, manufacturing, and design. Marcel Dekker, New York

    Google Scholar 

  4. Kalia S, Kaith BS, Kaur I (2009) Pretreatment of natural fibers and their application as reinforcing materials in polymer composites – a review. Polym Eng Sci 49:1253–1272

    Article  CAS  Google Scholar 

  5. Houghton JT (2004) Global warming – the complete briefing. Cambridge University Press, Cambridge

    Google Scholar 

  6. Nabi-Sahed D, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:221–274

    Google Scholar 

  7. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose-based fibers. Prog Polym Sci 4:221–274

    Article  Google Scholar 

  8. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  9. Mohanty AK, Misra M, Drzal LT (2002) Sustainable biocomposites from renewable resources: opportunities and challenges in the green material world. J Polym Environ 10:9–26

    Article  Google Scholar 

  10. Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review of current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2113

    Article  CAS  Google Scholar 

  11. Wambua P, Ivens I, Verpoest I (2003) Natural fibers: can they replace glass and fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  12. Satyanarayana KG, Guimarães L, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos A 38:1694–1709

    Article  Google Scholar 

  13. Aquino RCMP, d`Almeida JRM, Monteiro SN (2001) Flexural mechanical properties of piassava fibers (Attalea funifera)-resin matrix composites. J Mater Sci Lett 20:1017–1019

    Article  CAS  Google Scholar 

  14. Aquino RCMP, Monteiro SN, d`Almeida JRM (2003) Evaluation of the critical fiber Plength of iassava (Attalea funifera) fibers using the pullout test. J Mater Sci Lett 22:1495–1497

    Article  CAS  Google Scholar 

  15. de Deus JF, Monteiro SN, d`Almeida JRM (2005) Effect of drying, molding pressure, and strain rate on the flexural mechanical behavior of piassava (Attalea funifera Mart) fiber-polyester composites. Polym Test 24:750–755

    Article  Google Scholar 

  16. d`Almeida JRM, Aquino RCMP, Monteiro SN (2006) Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers composites. Compos A 37:1473–1479

    Article  Google Scholar 

  17. Leão AL, Tan IH, Caraschi JC (1998) Curaua fiber – a tropical natural fiber from Amazon – potential and applications in composites. In: Proceedings of the internacional conference on advanced composites, Hurghada, Egypt, pp 557–564

    Google Scholar 

  18. Monteiro SN, Aquino RCMP, Lopes FPD et al (2006) Mechanical behavior and structural characteristics of polymeric composites reinforced with continuous and aligned curaua fibers (in Portuguese). Rev Mater 11:197–203

    Article  Google Scholar 

  19. Monteiro SN, Ferreira AS, Lopes FPD (2008a) TMS Rupture mechanisms in composites reinforced with curaua fibers. In: Proceedings of the TMS 137th annual meeting and exhibition, New Orleans, LA, USA, pp 117–123

    Google Scholar 

  20. Silva RV, Aquino EMF (2008) Curaua fiber: a new alternative to polymeric composites. J Reinf Plast Comp 27:103–112

    Article  Google Scholar 

  21. d’Almeida JRM, Boynard CA (2000) Morphological characterization and mechanical behavior of sponge gourd (Luffa-cylindrica)-polyester composite materials. Polym Plast Technol Eng 39:489–499

    Article  Google Scholar 

  22. Boynard CA, Monteiro SN, d’Almeida JRM (2003) Aspects of alkali treatment of sponge Gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. J Appl Polym Sci 87:1927–1932

    Article  CAS  Google Scholar 

  23. Santos RS, Silveira ELC, Souza CML (2007) Study of the mechanical properties of thermoset polymeric matrix composites reinforced with buriti fibers (in Portuguese). In: Proceedings of the 30th Annual Meeting of the Brazilian Chemistry Society, Águas de Lindoia, Brazil, p 1

    Google Scholar 

  24. Monteiro SN, Lopes FPD, Costa LL et al (2008b) Study of the buriti waste fiber as a possible reinforcement of polyester composites. In: Proceedings of REWAS 2008: Global symposium on recycling, waste treatment and clean technology, Cancun, Mexico, pp 517–522

    Google Scholar 

  25. Monteiro SN, Lopes FPD, Ferreira AS, Nascimento DCO (2009) Natural fiber polymer matrix composites: cheaper, tougher and environmentally friendly. JOM 61:17–22

    Article  CAS  Google Scholar 

  26. Suddell BC, Evans WJ, Isaac DH et al (2002) A survey into the application of natural fibre composites in the automobile industry. In: Proceedings of the 4th international symposium on natural polymers and composites – ISNAPol, São Pedro, SP, Brazil, pp 455–461

    Google Scholar 

  27. Marsh G (2003) Next step for automotive materials. Mater Today 6:36–43

    Article  Google Scholar 

  28. Hill S (1997) Cars that grow on trees. New Scientist 153:36–39

    Google Scholar 

  29. Zah R, Hischier R, Leão AL et al (2007) Curaua fibers in automobile industry – a sustainability assessment. J Clean Prod 15:1032–1040

    Article  Google Scholar 

  30. Mercedes-Benz (2008) web page http://www.mercedes-benz.com.br. Accessed 30 August 2008

  31. Piggot MR (1987) The effect of interface/interphase on fiber composites properties. Polym Comp 8:291–297

    Article  Google Scholar 

  32. Désarmont G, Favre JP (1991) Advances in pull-out testing and data analysis. Comp Sci Technol 42:151–181

    Article  Google Scholar 

  33. Rao V, Herrera-Franco P, Ozello AD et al (1991) A direct comparison of the fragmentation test and the microbond pullout test for determining the interfacial shear strength. J Adhes 34:65–67

    Article  CAS  Google Scholar 

  34. Herrera-Franco PJ, Drzal LT (1992) Comparison methods for the measurement of fibre/matrix adhesion in composites. Composites 23:2–27

    Article  CAS  Google Scholar 

  35. Kim JK, Lu S, Mai Y (1994) Interfacial debonding and fibre pull out stresses. J Mater Sci 29:554–561

    Article  CAS  Google Scholar 

  36. Monteiro SN, d’Almeida JRM (2006) Pullout test in lignocellulosic fiber – a methodology of analysis. Rev Mater 11:189–196 (in Portuguese)

    Article  Google Scholar 

  37. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber – matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320

    Article  Google Scholar 

  38. Sydenstricker THD, Mochnaz S, Amico SC (2003) Pull-out and other evaluations on sisal-reinforced polyester biocomposites. Polym Test 22:375–380

    Article  CAS  Google Scholar 

  39. Park J-M, Son TQ, Jung J-G et al (2006) Interfacial evaluation of single ramie and kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Comp Interf 13:105–129

    Article  CAS  Google Scholar 

  40. Tanaka K, Minoshima, KM, Grela V et al (2002) Characterization of the aramid/epoxy interfacial properties by means of pull-out test and the influence of water absorption. Comp Sci Technol 62:2169–2177

    Google Scholar 

  41. Kelly A, Tyson WR (1965) High strength materials. Wiley, New York

    Google Scholar 

  42. Callister WD Jr (2007) Materials science and engineering – an introduction, 7th edn. Wiley, New York

    Google Scholar 

  43. Hull D, Clyne TW (1981) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  44. Kelly A (1966) Strong solids. University Press, London

    Google Scholar 

  45. Yue CY, Looi HC, Quek MY (1995) Assessment of fibre-matrix adhesion and interfacial properties using the pullout test. Int J Adhes Adhes 15:73–78

    Article  CAS  Google Scholar 

  46. Yue CY, Cheung WL (1992) Interfacial properties of fibrous composites: Part I. Model for the debonding and pullout processes. J Mater Sci 27:3173–3180

    Article  CAS  Google Scholar 

  47. Monteiro SN, Aquino RCM P, Lopes FPD (2008) Performance of curaua fibers in pullout tests. J Mater Sci 43:489–493

    Article  CAS  Google Scholar 

  48. Monteiro SN, Ferreira AS, Lopes FPD (2009b) Pullout tests of curaua fibers in epoxy matrix for evaluation of interfacial strength. In: Proceedings of the TMS 138th annual meeting and exhibition, San Francisco, USA, pp 1–7

    Google Scholar 

  49. da Costa LL, Santafé Jr HPG, Monteiro SN et al (2008) Pullout tests of coir fibers embedded in epoxy matrix. (in Portuguese). In: Proceedings of the 63th annual congress of the Brazilian association for metallurgy and materials, Santos, São Paulo, pp 1–10

    Google Scholar 

  50. Monteiro SN, Margem FM, Bravo Neto J (2010) Evaluation of the interfacial strength of ramie fibers in polyester matrix composites. In: Proceedings of the TMS 139th annual meeting and exhibition, Seattle, USA, pp 1–8

    Google Scholar 

  51. Monteiro SN, Inacio WP, Lopes FPD et al (2009c) Characterization of the critical length of sisal fibers for polyester composite reinforcement. In: Proceedings of the TMS 138th annual meeting and exhibition, San Francisco, USA, pp 1–8

    Google Scholar 

  52. Miller B, Muri P, Rebenfeld LA (1987) Microbond method for determination of the shear strength of a fiber/resin interface. Compos Sci Tech 28:17–32

    Article  CAS  Google Scholar 

  53. Craven JP, Cripps R, Viney C (2000) Evaluating the silk epoxy interface by means of the microbond test. Compos A 31:653–660

    Article  Google Scholar 

  54. Mandell JF, Grande DH, Hong KCCT (1989) Fibre-matrix bond strength studies of glass, ceramic and metal matrix composites. J Mater Sci 23:311–328

    Google Scholar 

  55. Joseph K, Thomas S, Pavithran C et al (1993) Tensile properties of short sisal fiber-reinforced polyethylene composites. J Appl Polym Sci 47:1731–1739

    Article  CAS  Google Scholar 

  56. Nair KCM, Diwan SM, Thomas S et al (1996) Tensile properties of short sisal fiber-reinforced polystyrene composites. J Appl Polym Sci 60:1483–1497

    Article  CAS  Google Scholar 

  57. Chand N, Rohtgi PK (1986) Adhesion of sisal fibre-polyester system. Polym Commun 27:157–160

    CAS  Google Scholar 

  58. Drzal LT, Rich MJ, Lloyd PF (1982) Adhesion of graphite fibers to epoxy matrices. I. The role of fiber surface treatment. J Adhes 16:1–30

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the Publishers: Elsevier Publishers, Wiley InterScience Publishers, SpringerLink Com and Brazilian Association for Metallurgy and Materials (ABM) for their kind permission to reproduce some of the Figures and Tables used in this chapter. The authors thank the support to this investigation by the Brazilian agencies CNPq, CAPES, FINEP, and FAPERJ. The collaboration of Lucas L. da Costa, Jarbas Bravo Neto, Wellington P. Inacio, Romulo L. Loiola, Tammy G. Portela, Isabela L.A. da Silva, and Alice B. Bevitori is also acknowledged. One of the authors (Dr.KGS) acknowledges the encouragement and interest shown by the three Institutions with which he is presently associated with.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kestur Gundappa Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monteiro, S.N. et al. (2011). Interfacial Shear Strength in Lignocellulosic Fibers Incorporated Polymeric Composites. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_9

Download citation

Publish with us

Policies and ethics