Skip to main content

Cellulosic Bast Fibers, Their Structure and Properties Suitable for Composite Applications

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

A wide variety of natural fibers can be applied as reinforcement or fillers in composites. Bast fibers, such as flax and hemp, have a long history of cultivation and use. They are characterized by low weight and excellent range of mechanical properties. The properties of bast fibers are influenced by conditions of cultivation, retting, and processing. Pretreatment and surface modification of bast fibers is conducted for optimization of the interfacial characteristics between fiber and matrix as well as improvement of their mechanical properties. Application of bast fibers as reinforcement to replace the glass fibers to composite manufacture brings positive environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla A, Pickering K (2002) The use of silane as a coupling agent for wood fibre composites. Proceedings of the 3rd Asian-Australasian Conference on Composite Materials (ACCM-3), Auckland, New Zealand

    Google Scholar 

  • Abdalla A, Pickering K, MacDonald AG (2002) Mechanical Properties of Thermoplastic Matrix Composites with Silane-Treated Wood Fibre. Proceedings of the 6rd International Conference on Flow Processes in Composite Materials, Auckland, New Zealand

    Google Scholar 

  • Alexander E, Lewin M, Litav Y, Peres H, Sholoh M (1962) Text Res J 32:898

    Article  Google Scholar 

  • Almeida JRM, Aquino RCMP, Monteiro SN (2006) Compos A 37:1473

    Article  Google Scholar 

  • Bacci L, Baronti S, Predieri S, di Virgilio N (2009) Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind Crops Prod 29(2–3):480–484

    Article  Google Scholar 

  • Batra SK (2007) Other long vegetable fibres: abaca, banana, sisal, henequen, flax, ramie, hemp, sunn and coir. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. Taylor and Francis, Boca Raton, FL, pp 453–520, Chapter 8

    Google Scholar 

  • Beckers EPJ, Militz H (1994). Acetylation of solid wood. Second Pacific Rim-Based Composites Symposium, Vancouver, Canada 125–134

    Google Scholar 

  • Berthold J, Rinaudo M, Salmen L (1996) Association of water to polar groups; estimation by an adsorption model for lignocellulose materials. Colloids Surf A 1996(112):117

    Article  Google Scholar 

  • Bledzki A (1997) Recykling materialow polimerowych. Wydawnictwo Naukowo – Techniczne. Warszawa

    Google Scholar 

  • Bledzki AK, Gassan J (1997a) Natural fiber reinforced plastics. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker Inc, New York

    Google Scholar 

  • Bledzki AK, Gassan J (1997b) Natural fiber reinforced plastics. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, New York

    Google Scholar 

  • Bledzki A, Gassan J, Lucka M. (2000) (in Polish) Renesans tworzyw sztucznych wzmocnionych wloknami naturalnymi. (Natural Fiber – Reinforced Polymers Come Back). Polimery, 45(2): 98–108

    Google Scholar 

  • Bredemann G (1959) Die große Brennessel Urtica dioica L Forschung über ihren Anbau zur Fasergewinnung. Akademieverlag, Berlin

    Google Scholar 

  • Czaplicka-Kolarz K (2008a) Foresight technologiczny materialow polimerowych w Polsce – analiza stanu zagadnienia. Poznan

    Google Scholar 

  • Czaplicka-Kolarz K (2008b) Scenariusze rozwoju technologicznego materialow polimerowych w Polsce. Poznan

    Google Scholar 

  • Czerniak L, Kirkowski R, Kozlowski R, Zimniewska M (1998) The earliest traces of flax textiles in central Europe, Kujawy (Poland). Nat Fibres 1:18–19, Special Edition

    Google Scholar 

  • Dreyer J, MüGssig J, Koschke N et al (2002) Comparison of enzymatically separated hemp and nettle fibre to chemically separated and steam exploded hemp fibre. J Ind Hemp 7(1):43–59

    Article  Google Scholar 

  • Escamila G, Trugillo GR, Franco PJH, Mendizabal E, Puig JE (1970) J Polym Sci 66:339

    Google Scholar 

  • George J, Janardhan R, Anand JS, Bhagawan SS, Thomas S (1996) Polymer 37(24):5421–5431

    Article  CAS  Google Scholar 

  • Han GS, Saka S, Shiraisi N (1991) Composites of wood and polypropylene. Morphological study of composites by TEM–EDXA. Mokuzai Gakkaishi 3:241

    Google Scholar 

  • Hattallia S, Benaboura A, Ham-Pichavant F, Nourmamode A, Castellan A (2002) Polym Degrad Stab 75:259

    Article  Google Scholar 

  • International Year of Natural Fibres 2009 – http://www.naturalfibres2009.org

  • Iorio I, Leone C, Nele L, Tagliaferri V (1997) Plasma treatments of polymeric materials and Al alloy for adhesive bonding. J Mater Process Technol 68:179–183

    Article  Google Scholar 

  • Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Spectrochim Acta A: Mol Biomol Spectrosc 58:2271

    Article  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  • Joshy MK, Mathew Lovely J (2006) Rani studies on short isora fibre-reinforced polyester composites. Compos Interfaces 13(4–6):377–390

    Article  CAS  Google Scholar 

  • Kicinska-Jakubowska A, Bogacz E (2009) Private sources of INFMP

    Google Scholar 

  • Kolodziej J, Mankowski J, Kubacki A (2007) Wlasciwosci energetyczne odpadow z przerobu lnu i konopi w porownaniu z innymi surowcami roslinnymi. Biuletyn Informacyjny PILiK Len i Konopie nr 6 Poznan: 35–42

    Google Scholar 

  • Koppers’ Acetylated Wood. New Materials Technical Information No. (RDW-400), E-106 (1961)

    Google Scholar 

  • Kozlowski R (1997) The potential of natural fibres in Europe. Industrial applications lignocellulosic – Plastics Composites Sao Paulo

    Google Scholar 

  • Kozlowski R, Mackiewicz Talarczyk M (2005) Inventory of world fibres and involvement of FAO in fibre research. Institute of Natural Fibres, Poznan, Poland

    Google Scholar 

  • Kozlowski R, Wladyka-Przybylak M (2004) Chapter 14 Uses of natural fiber reinforced plastics in book “natural fibers, plastics and composites” In: Wallenberger FT, Weston NE (ed) Kluwer Academic Publishers, Boston

    Google Scholar 

  • Kozlowski R, Wladyka-Przybylak M, Helwig M, Kurzydlowski K (2004) Composites based on lignocellulosic raw materials. Molecular crystal and liquid crystal. Proceedings of VIIth ICFPAM Molecular Crystals and Liquid Crystals. vol 415–418:301–321

    Google Scholar 

  • Kroschwitz JI (1990) Polymers: fibers and textiles. Wiley, New York

    Google Scholar 

  • Maldas D, Kokta BV, Daneaulf C (1989) J Appl Polym Sci 37:751

    Article  CAS  Google Scholar 

  • Mankowski J, Kaniweski R, Kubacki A (2001) Composite Elements for Automotive Industry. Proceedings of Second Global Workshop Bast Plants in the New Millennium

    Google Scholar 

  • Mankowski J, Kubacki A, Kolodziej J (2009) Efficient system of producing hemp fiber for industrial aplications. Natural fibres. Their attractiveness in multi directional aplications. Gdynia Cotton Association, Gdynia

    Google Scholar 

  • Militz H, Beckers EPJ, Homan WJ (1997). Int. Res. Group Wood Pres., Doc. No. IRG = WP 97-40098

    Google Scholar 

  • Mohanty AK, Patnaik S, Singh BC (1989) J Appl Polym Sci 37:1171–1181

    Article  CAS  Google Scholar 

  • Oerlikon Textile The Fibre Year 2008/09 A World Survey on Textile and Nonwovens Industry, Issue 9 – May 2009 http://www.oerlikontextile.com

  • Otlesnov Y, Nikitina N (1977) Latvijas Lauksaimniecibas Akademijas Raksti: 130, 50

    Google Scholar 

  • Pandey SN, Anantha Krishnan SR (1990) Fifty years of research in jute 1939–1989. Jute Technology Research Laboratories, Hooghly Printing Co. Ltd., Calcutta, India

    Google Scholar 

  • Paukszta D (2000) The structure of modified natural fibers used for the preparation the composites with polypropylene. SPIE Int Soc Opt Eng 4240:38–41

    CAS  Google Scholar 

  • Petash W, Raüchle E, Walker M, Elsner P (1995) Improvement of the adhesion of low energy polymers by a short time plasma treatment. Surf Coat Technol 74–75:682–688

    Article  Google Scholar 

  • Pickering LK (2008) Properties and performance of natural-fibre composites, Woodhead Publishing Limited: 3–66

    Google Scholar 

  • Pizzi A (1987) The structure of cellulose by conformation analysis. 5. The cellulose II water sorption isotherm, In: Macromol J (ed) Sci-Chem; A24(9): 1065–1084.

    Google Scholar 

  • Poradnik Inzyniera (1978) Wlokiennictwo, WNT. Warszawa:11–27

    Google Scholar 

  • Pott GT (2004) Natural fibres with low moisture sensitivity, Chapter 8 of book: natural fibres, plastics and composites.In: Frederick T (ed) Wallenberger, Kluwer Academic Publishers, pp 106–110

    Google Scholar 

  • Ray AK, Moandal S, Das SK, Ramachandrarao P (2005) J Mater Sci 40:5249

    Article  CAS  Google Scholar 

  • Report on Bio-based Plastics and Composites. Nova Institut 2009 http://www.renewable-resources.de

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) Compos Sci Technol 61:1437

    Article  CAS  Google Scholar 

  • Rowell RM (2002) Chemical modification of natural fibres to improve performance. Wood Modification Thematic Network Newsletter, Issue 3 (April)

    Google Scholar 

  • Satyanarayana KG, Ravikumar KK, Sukumaran K, Mukherjee PS, Pillai SGK, Kulkarni AK (1986) J Mater Sci 21:57–63

    Article  Google Scholar 

  • Saurer Report “The Fiber Year 2005/2006”, Issue 6, May 2006

    Google Scholar 

  • Scruggs B, Smith J (2003) “Ramie: Old Fibre – New Image” Ohio State University Extension Fact Sheet, HYG-5501-90

    Google Scholar 

  • Sheen AD (1992) The preparation of acetylated wood fibre on a commercial scale. Pacific Rim Bio-Based Composites Symposium; Chemical Modification of Lignocellulosics, FRI Bull: 176, 1–8

    Google Scholar 

  • Sreekala MS, Kumaran MG, Thomas S (2000) Effect of chemical modifications on the mechanical performance of oil palm fibre reinforced phenol formaldehyde composites. In natural polymers and composites. In: Capparelli Mattoso LH et al. (ed) Embrapa Instrumentacao Agropecuaria, Sao Carlos

    Google Scholar 

  • Thomas S (2002) Cellulose fiber reinforced composites: new challenges and opportunities. 4th International Wood and Natural Fibre Composites Symposium, Kassel Germany, April 10–11

    Google Scholar 

  • Tu X, Young RA, Denes F (1994) Improvement of bonding between cellulose and polypropylene by plasma treatment. Cellulose 1:87–106

    Article  CAS  Google Scholar 

  • Urbanczyk G (1985) Nauka o Wloknie. WNT, Warszawa

    Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Compos B Eng 30:309–320

    Article  Google Scholar 

  • Wurl and Vetter (1994), Faserinstitut Bremen

    Google Scholar 

  • West PD (1998) Hemp and Marijuana: Myths and Realities, North American Industrial Hemp Council

    Google Scholar 

  • Xue L, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  • Yanai Y Non-resin shrink-proof process, Caltopia. Nisshinbo Industries Inc. Miai Plant, Aichi, Japan (unpublished)

    Google Scholar 

  • Young RA (1996) Utilization of natural fibers: characterization, modification and applications. In: Lea AL et al (eds) Lignocellulosic–plastics composites. UNESP, Sao Paulo

    Google Scholar 

  • Zuchowska D (2000) Polimery konstrukcyjne. Wydawnictwo Naukowo – Techniczne. Warszawa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Zimniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimniewska, M., Wladyka-Przybylak, M., Mankowski, J. (2011). Cellulosic Bast Fibers, Their Structure and Properties Suitable for Composite Applications. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_4

Download citation

Publish with us

Policies and ethics