Skip to main content

Cellulose Nanocomposites for High-Performance Applications

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

Cellulose nanofibers and their composites offer a highly attractive research line in recent times. Cellulose nanofibers have generated a great deal of interest as a source of nanometer-sized fillers because of their sustainability, easy availability, and the related characteristics such as a very large surface-to-volume ratio, outstanding mechanical, electrical, and thermal properties. This chapter describes the many processes to produce nanocellulose from different cellulosic sources and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, it provides knowledge of different nanocelluloses and nanocomposites and provides updated information on their properties and also deals with fascinating high-tech applications, especially in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemdar A, Sain M (2006). Biodegradable nanocomposites from wheat straw. In: Proceedings of the AIChE 2006 Annual Meeting, San Francisco, CA November 12–17

    Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues – wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Alvarez O, Patel M, Booker J et al (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233

    Google Scholar 

  • Andresen M, Johansson LS, Tanem BS et al (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Moretro T et al (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  Google Scholar 

  • Angle’s MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  • Angle’s MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposites materials. 2. Mechanical behavior. Macromolecules 34:2921–2931

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S et al (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S et al (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S et al (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native celluloses: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Auad ML, Contos VS, Nutt S et al (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez JY et al (2004a) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Paillet M et al (2004b) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Mateos AM et al (2004c) Plasticized nanocomposites polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Chazeau L, Alloin F et al (2005a) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez JY et al (2005b) Nanocomposite polymer electrolytes based poly(oxyethylene) and cellulose whiskers. Polymeros: Ciência e Tecnologia 15:109–113

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2006) High performance nanocomposite polymer electrolytes. Compos Interface 13:545–559

    Article  Google Scholar 

  • Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465

    Article  CAS  Google Scholar 

  • Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544

    Article  CAS  Google Scholar 

  • Barud HS, Barrios C, Regiani T et al (2008) Selfsupported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C-Biomim Supramol Syst 28:515–518

    Article  CAS  Google Scholar 

  • Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA et al (1956) Level-off degree of polymerization. Relation to polyphase structure of cellulose fibres. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bendahou A, Habibi Y, Kaddami H et al (2009) Physico-chemical characterization of palm from phoenix dactylifera-1, preparation of cellulose whiskers and natural rubber-based composites. J Biobased Mater Bioenergy 3:81–90

    Article  CAS  Google Scholar 

  • Berlioz S, Molina-Boisseau S, Nishiyama Y et al (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofibre-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bodin A, Bäckdahl H, Fink L et al (2007a) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434

    Article  CAS  Google Scholar 

  • Bodin A, Concaro S, Brittberg M et al (2007b) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007a) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interface 14:617–630

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007b) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A 38:2486–2492

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006a) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Bondeson D, Kvien I, Oksman K (2006b) ACS symposium series, vol 938. American Chemical Society, Washington, DC

    Google Scholar 

  • Bonin C (2000) PhD Thesis, Joseph Fourier University, Grenoble, France

    Google Scholar 

  • Brown RM (2004) Bacterial cellulose: its potential for new products of commerce. Abstr Pap Am Chem Soc 227:U303–U303

    Google Scholar 

  • Brown EE, Laborie MPG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081

    Article  CAS  Google Scholar 

  • Bruce DM, Hobson RN, Farrent JW et al (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci Manuf 36:1486–1493

    Article  CAS  Google Scholar 

  • Cao X, Dong H, Li C (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR et al (2008a) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR et al (2008b) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Exp Polym Lett 2:502–510

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Lucia LAJ (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) “Cellulose microfibres as reinforcing agents for structural materials”, cellulose nanocomposites: processing, characterization, and properties. ACS Symp Ser 938:169–86

    Article  CAS  Google Scholar 

  • Chauve G, Heux L, Arouini R et al (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6:2025–2031

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Terech P (1990) Mechanical behaviour above Tg of a plasticized PVC reinforced with cellulose whiskers. A SANS structural study. Polymer 40:5333–5344

    Article  Google Scholar 

  • Chazeau L, Cavaillé JY, Canova G et al (1999a) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808

    Article  CAS  Google Scholar 

  • Chazeau L, Paillet M, Cavaille JY (1999b) Plasticized PVC reinforced with cellulose whiskers I. Linear viscoelastic behavior analyzed through the quasi-point defect theory. J Polym Sci Part B: Polym Phys 37:2151–2164

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers II. Plastic behavior. J Polym Sci Part B: Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  • Chen G, Dufresne A, Huang J et al (2009) A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly(epsilon-caprolactone). Macromol Mater Eng 294:59–67

    Article  CAS  Google Scholar 

  • Cheng Q, Wang SQ, Rials TG et al (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibres. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibres and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633–639

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    Article  CAS  Google Scholar 

  • Czaja WK, David JY, Kawecki M et al (2007a) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Kawecki M et al (2007) Biomedical applications of microbial cellulose in burn wound recovery. In: Brown Jr. RM, Saxena IM (eds) Cellulose: Molecular and Structural Biology: Selected Articles on the Synthesis, Structure, and Applications of Cellulose. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C et al (2007) Viscoelastic behavior and electrical properties of flexible nanofibre filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • Damien C, Heather AB, Oster GA et al (2005) Dura substitute and a process for producing the same. United State Patent US20050042263A1

    Google Scholar 

  • de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18:992–996

    Article  CAS  Google Scholar 

  • Demling RH, DeSanti L (1999) Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 25:256–261

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp. Cellulose 3:183–188

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(beta-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    Article  CAS  Google Scholar 

  • Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interface 7:53–67

    Article  CAS  Google Scholar 

  • Dufresne A (2003) Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interface 10:369–387

    Article  CAS  Google Scholar 

  • Dufresne AJ (2006) Comparing the mechanical properties of high performance polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330

    CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon M (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Dumitriu S (2005) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York

    Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym Plast Technol Eng 43:797–820

    Article  CAS  Google Scholar 

  • Falcão SC, Neto JE, Coelho ARB (2008) Incorporation by host tissue of two biomaterials used as repair of defects produced in abdominal wall of rats. Acta Cir Bras 23:78–83

    Article  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995a) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaille JY et al (1995b) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Shrivastava SC et al (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  CAS  Google Scholar 

  • Filpponen I (2009) PhD Thesis, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Fontana JD, Souza AM, Fontana CK et al (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264

    Article  Google Scholar 

  • Fontana JD, Franco VC, Souza SJ et al (1991) Nature of plant stimulator in the production of Acetobacter xylinum (“Tea Fungus”) biofilm used in therapy. Appl Biochem Biotechnol 28–29:341–351

    Article  Google Scholar 

  • Gallin WJ, Hepperle B (1998) Burn healing in organ cultures of embryonic chicken skin: a model system. Burns 24:613–620

    Article  CAS  Google Scholar 

  • Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R et al (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM et al (2008) Morphological characterisation of bacterial cellulose–starch nanocomposites. Polym Polym Compos 16:181–185

    CAS  Google Scholar 

  • Grunnert M, Winter WT (2000) Progress in the development of cellulose reinforced nanocomposites. Polym Mater Sci Eng 82:232–238

    Google Scholar 

  • Grunnert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Polym Environ 10:27–30

    Article  Google Scholar 

  • Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibres using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin AL, Schiltz N et al (2008) Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrials pulps of hydrolysis conditions and raw materials. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westmana G et al (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Mater 4:2238–2244

    Article  CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym/PVA Hydrogels/Anionic Polym Nanocompos 153:37–65

    Article  CAS  Google Scholar 

  • Hayashi H, Shimo T (2006) Automobile outside plates with good surface smoothness from cellulose fibre prepregs. Jpn Kokai Tokkyo Koho 2005–136053:9

    Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I_ crystalline domains. Carbohydr Polym 61:191–197

    Article  CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A et al (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mat Res Part A 76:431–438

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Heux L, Bonini C (2000) Microfibrillated and/or microcrystalline dispersion, in particular of cellulose, in an organic solvent. International Patent WO/2000/077088

    Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F et al (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  Google Scholar 

  • Hofstetter K, Hinterstoisser K, Salmén L (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145

    Article  CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M et al (2006) Review article: polymer–matrix nanocomposites, processing, and application: an overview. Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR et al (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670

    Article  CAS  Google Scholar 

  • Iamaguti LS, Brandão CVS, Minto BW et al (2008) Utilização de membrana biossintética de celulose na trocleoplastia experimental em cães. Avaliações clínica, radiográfica e macroscópica. Vet e Zootec 15:160–168

    Google Scholar 

  • Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibres for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Ioelovich M, Leykin A (2004) Nano-cellulose and its applications. Sci Israel – Technol Adv 6:17–24

    CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H et al (2005) Optically transparent composites reinforced with plant fibre-based nanofibres. Appl Phys A-Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofibre-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils – an enzymatic approach. Bioresources 1:176–188

    Google Scholar 

  • Jiang L, Morelius E, Zhang J et al (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645

    Article  CAS  Google Scholar 

  • Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55:185–193

    Article  CAS  Google Scholar 

  • Junior de Menezes A, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymers 50:4552–4563

    Article  CAS  Google Scholar 

  • Juntaro J, Pommet M, Mantalaris A et al (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interface 14:753–762

    Article  CAS  Google Scholar 

  • Juntaro J, Pommet M, Kalinka G et al (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibres. Adv Mater 20:3122–3126

    Article  CAS  Google Scholar 

  • Kai A (1976) The fine structure of Valonia microfibril. Gel permeation chromatographic studies of Valonia cellulose. Sen-i Gakkaishi 32:T326–T334

    Google Scholar 

  • Khadem HS (1988) Carbohydrate chemistry: monosaccharides and their oligomers. Academic, New York

    Google Scholar 

  • Kim J, Montero G, Habibi Y et al (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061

    Article  CAS  Google Scholar 

  • Kimura F, Kimura T, Tamura M et al (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley VCH, Chichester

    Book  Google Scholar 

  • Klemm D, Schumann D, Udhart U et al (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Udhardt U, Marsch S et al (2003) Method and device for producing shaped microbial cellulose for use as a biomaterial, especially for microsurgery. United State Patent US2003/0013163

    Google Scholar 

  • Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205:49–96

    Article  CAS  Google Scholar 

  • Koch G (2006) Raw Material for Pulp. In: Sixta H (ed) Handbook of pulp. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Koshizawa T (1960) Degradation of wood cellulose and cotton linters in phosphoric acid. Kami Pa Gikyoshi 14:455

    CAS  Google Scholar 

  • Kroonbatenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen-bonding in native and regenerated cellulose fibres. Polym Commun 27:290–292

    CAS  Google Scholar 

  • Kumar V (2002) Powdered/microfibrillated cellulose. WO Patent WO/2002/022172

    Google Scholar 

  • Latarjet J (1995) A simple guide to burn treatment. Burns 21:221–225

    Article  CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M et al (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  • Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Part B: Polym Phys 47:1069–1077

    Article  CAS  Google Scholar 

  • Lin N, Chen G, Huang J et al (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739

    Article  CAS  Google Scholar 

  • Lönnberg H, Fogelström L, Malström E et al (2008) Microfibrillated cellulose films grafted with poly(e-caprolactone) – for biocomposite applications. Nordic Polymer Days, Stockholm, 11–13 June

    Google Scholar 

  • Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites fromcottonseed linter. Macromol Biosci 5:1101–1107

    Article  CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204

    Article  CAS  Google Scholar 

  • Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526

    Article  CAS  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10:497–504

    Article  CAS  Google Scholar 

  • Marcovich NE, Auad ML, Bellesi NE et al (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881

    Article  CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K et al (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, DC

    Google Scholar 

  • Matsuda Y (2000) Properties and use of microfibrillated cellulose as papermaking addition. Sen’i Gakkaishi 56:192

    Google Scholar 

  • Matsuda Y, Hirose M, Ueno K (2001) Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same. US Patent 6183596

    Google Scholar 

  • Mattoso LHC, Medeiros ES, Baker DA et al (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9:2917–2922

    Article  CAS  Google Scholar 

  • Mayall RC, Mayall AC, Mayall LC et al (1990) Tratamento das ulceras troficas dos membros com um novo substitute da pele. Rev Bras Cir 80:257–283

    Google Scholar 

  • Mello LR, Feltrin LT, Fontes Neto PT et al (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–50

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fibre towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fibre based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater 80:155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the rein- forcing cellulose nanofibres. Cellulose 15:323–331

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mat Mater Sci Process 80:93–97

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H et al (2003a) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fibre diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY et al (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2009) Optically transparent nanofibre sheets by deposition of transparent materials: a concept for roll- to-roll processing. Appl Phys Lett 94:1–3

    Article  CAS  Google Scholar 

  • Nogi M, Handa K, Nakagaito AN et al (2005) Optically transparent bionanofibre composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:1–3

    Article  CAS  Google Scholar 

  • Nogi M, Abe K, Handa K et al (2006a) Property enhancement of optically transparent bionanofibre composites by acetylation. Appl Phys Lett 89:1–3

    Article  CAS  Google Scholar 

  • Nogi M, Ifuku S, Abe K et al (2006b) Fibre-content dependency of the optical transparency and thermal expansion of bacterial nanofibre reinforced composites. Appl Phys Lett 88:1–3

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN et al (2009) Optically transparent nanofibre paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Noorani S, Simonsen J, Atre S (2006) In cellulose nanocomposites: processing, characterization and properties. In: Oksman K, Sain M (eds) ACS symposium series, vol 938. American Chemical Society, Washington, DC

    Google Scholar 

  • Novaes AB, Novaes AB (1997) Soft tissue management for primary closure in guided bone regeneration: surgical technique and case report. Int J Oral Maxillofac Implants 12:84–87

    Google Scholar 

  • Novaes AB Jr, Marcaccini AM, Souza SL et al (2003) Immediate placement of implants into periodontally infected sites in dogs: a histomorphometric study of bone–implant contact. Int J Oral Maxillofac Implants 18:391–398

    Google Scholar 

  • Nyström G, Mihranyan A, Razaq A et al (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  CAS  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S et al (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961

    Article  CAS  Google Scholar 

  • Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Series A-Solid Mech Mater Eng 48:199–204

    Google Scholar 

  • Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fibre reinforced PLA with microfibrillated cellulose. Compos Part A-Appl Sci Manuf 40:469–475

    Article  CAS  Google Scholar 

  • Ono E, Watabe O, Yamanaka S (1989) Substitution material for living body texture. Japanese Patent JP03165774A2

    Google Scholar 

  • Oster GA, Lentz Y, Koehler K et al (2003) Xylus Corporation, assignee. Solvent dehydrated microbially-derived cellulose for in vivo implantation. United State Patent US6599518

    Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure. Biomacromolecules 8:1934–1941

    Article  CAS  Google Scholar 

  • Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34:6527–6530

    Article  CAS  Google Scholar 

  • Paralikar AS, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Petersson L, Mathew AP, Oksman K (2009) Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. J Appl Polym Sci 112:2001–2009

    Article  CAS  Google Scholar 

  • Podsiadlo P, Sui L, Elkasabi Y et al (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906

    Article  CAS  Google Scholar 

  • Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687

    Article  CAS  Google Scholar 

  • Prasanna M, Mishra P, Thomas C (2004) Delayed primary closure of the burn wounds. Burns 30:169–175

    Article  Google Scholar 

  • Pu YQ, Zhang JG, Elder T et al (2007) Investigation into nanocellulosics versus acacia reinforced acrylic films. Compos Part B Eng 38:360–366

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L et al (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602

    Article  CAS  Google Scholar 

  • Quinn KJ, Courtney JM, Evans JH et al (1985) Principles of burn dressings. Biomaterials 6:369–377

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibres from agricultural by products for industrial applications. Trends Biotechnol 23:22–27

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Roberts EM, Hardison LK, Brown Jr. RM (1986) Production of Microbial Cellulose. European Patent No. 0186495

    Google Scholar 

  • Rojas OJ, Montero GA, Habibi YJ (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2006) Cellulose nanocomposites: processing, characterization, and properties. In: Oksman K, Sain M (eds) ACS symposium series 938. American Chemical Society, Washington, DC

    Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  • Ruiz MM, Cavaille JY, Dufresne A et al (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interface 7:117–131

    Article  CAS  Google Scholar 

  • Ruiz MM, Cavaillé JY, Dufresne A et al (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 16:211–222

    Article  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Review. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R et al (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199

    Article  CAS  Google Scholar 

  • Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888

    Article  CAS  Google Scholar 

  • Schumann DA, Wippermann J, Klemm DO et al (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885

    Article  CAS  Google Scholar 

  • Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Souza LMM, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  • Teixeira EM, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibres from white and naturally colored cotton fibres. Cellulose 17:595–606

    Article  CAS  Google Scholar 

  • Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875

    Article  CAS  Google Scholar 

  • Thomas H, Heine E, Wollseifen R et al (2005) Nanofibres from natural and inorganic polymers via electrospinning. Int Nonwovens J 14:18

    Google Scholar 

  • Tobushi H, Hara H, Yamada E et al (1996a) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5:483–491

    Article  CAS  Google Scholar 

  • Tobushi H, Hayashi S, Ikai A et al (1996b) Thermomechanical properties of shape memory polymers of polyurethane series and their applications. J de Phys IV 6:377–384

    CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J et al (2002a) Cp/MAS 13c NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M (2002b) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Van den Berg O, Capadona JR, Weder C (2007a) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357

    Article  CAS  Google Scholar 

  • Van den Berg O, Schroeter M, Capadona JR et al (2007b) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753

    Article  CAS  Google Scholar 

  • Vignon MR, Montanari S, Habibi Y (2004) Crystalline polysaccharide derivatives in the form of water-insoluble aggregates of microcrystals, for use e.g. as viscosity modifiers or super-absorbers, manufactured by controlled oxidation of primary alcohol groups. Centre National de la Recherche Scientifique (CNRS), France, FR 2003/5195

    Google Scholar 

  • Wågberg L, Decher G, Norgren M et al (2008) The build up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  CAS  Google Scholar 

  • Wan WK, Hutter JL, Millon LE et al (2006) Bacterial cellulose and it’s nanocomposites for biomedical applications. In: Oksman K, Sain M (eds) Cellulose nanocomposites. Processing characterization and properties. American Chemical Society, Washington, DC

    Google Scholar 

  • Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofibre in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) Isolation of nanofibres from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007c) The effect of chemically coated nanofibre reinforcement on biopolymer based nanocomposites. Bioresources 2:371–388

    CAS  Google Scholar 

  • Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007a) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007b) Study of structural morphology of hemp fibre from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  CAS  Google Scholar 

  • Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179

    Article  CAS  Google Scholar 

  • Yachi T, Hayashi J, Takai M et al (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325–343

    CAS  Google Scholar 

  • Yamanaka S, Ono E, Watanabe K et al (1990) Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European Patent EP0396344A2

    Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibres. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Yi J, Xu Q, Zhang X et al (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    Article  CAS  Google Scholar 

  • Yuan XP, Ding EY (2006) Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose polyethylene glycol. Chin Chem Let 17:1129–1132

    CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M et al (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700

    Article  CAS  Google Scholar 

  • Zhang JG, Elder TJ, Pu YQ et al (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611

    Article  CAS  Google Scholar 

  • Zhang J, Jiang N, Dang Z et al (2008) Oxidation and sulfonation of cellulosics. Cellulose 15:489–496

    Article  CAS  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

  • Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

  • Zoppe J, Habibi, Y, Efimenko K et al (2009) ATRP modification of nanocellulose substrates, Abstr Pap ACS Natl Meet 237: Cell-46

    Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J et al (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibin Mathew Cherian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cherian, B.M., Leao, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. (2011). Cellulose Nanocomposites for High-Performance Applications. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_21

Download citation

Publish with us

Policies and ethics