Skip to main content

Utilization of Rice Husks and the Products of Its Thermal Degradation as Fillers in Polymer Composites

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

Rice husks are an important by-product of the rice milling process and are a major waste product of the agricultural industry. Rice husks contain nearly 20 mass% silica, which is present in hydrated amorphous form. They have now become a great source of raw biomass material for manufacturing value-added silicon composite products, including silicon carbide, silicon nitride, silicon tetrachloride, magnesium silicide, pure silicon, zeolite, fillers of rubber and plastic composites, cement, adsorbent, and support of heterogeneous catalysts. The controlled burning or thermal degradation of the rice husks in air or nitrogen leads to the production of white rice husk ash (WRHA) or black rice husk ash (BRHA), respectively.

The present review is an attempt to consolidate and critically analyze the research work carried out so far on the processing, properties, and application of rice husks and the products of its thermal degradation in various laboratories and also highlight some results on the processing and characterization of rice husk ashes (RHAs) and reactive silica obtained in the author’s laboratory. In this connection, the composition, structure, and morphology of the raw rice husks (RRHs) and the products obtained from its thermal degradation in an oxidative or inert atmosphere are described in detail. The controlled burning or pyrolysis of the RRHs in a fluidized-bed reactor is shown to be the most perspective method. The products obtained might successfully be used as fillers of polypropylene (PP) and tetrafluoroethylene-ethylene copolymer (TFE-E) composites, rubbers, and other polymer composites and to replace the expensive synthetic additive as Aerosil, for instance. The physicochemical and physicomechanical characteristics of the obtained composites are described. The RHA-polymer composites can lead to the futuristic “organic–inorganic hybrid materials” with specific properties. Due to the high pozzolanic activity, the rice husk silica also finds application in high strength concrete as a substitute for silica fume.

The abundance of waste from paddy milling industry as well as its interesting complex of behaviors are prerequisites for success in obtaining cheap and valuable products and stipulate new alternatives for its applications. The production of value added materials from rice husks not only facilitates utilization of an abundantly available agro waste but also reduces the environmental pollution and solves a serious ecological problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Govindarao VMH (1980) Utilization of rice husk: a preliminary analysis. J Sci Ind Res 39:495–515

    CAS  Google Scholar 

  2. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    CAS  Google Scholar 

  3. Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40:5861–5877

    CAS  Google Scholar 

  4. Kaushik V, Sharma HK, Prasad KM, Bera B (2001) Utilization of husk ash from rice milling industry: a review. J Ind Pollut Contr 17:201–205

    CAS  Google Scholar 

  5. Chandrasekhar S, Satyanarayana KG, Pramada PN, Raghavan P, Gupta TN (2003) Processing, properties and applications of reactive silica from rice husk: an overview. J Mater Sci 38:3159–3168

    CAS  Google Scholar 

  6. Babel S, Kurniawan TA (2003) Low cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Google Scholar 

  7. Liou TH (2004) Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon 42:785–794

    CAS  Google Scholar 

  8. Chuah TG, Jumasiah A, Aznu I, Katayon S, Thomas Choong SY (2005) Rice husks as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175:305–316

    CAS  Google Scholar 

  9. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    CAS  Google Scholar 

  10. Muthadhi A, Anitha R, Kothandaraman S (2007) Rice husk ash – properties and its use: a review. IE(I) Journal-CV 88:50–56

    Google Scholar 

  11. Rozainee M (2007) Production of amorphous silica from rice husk in fluidized bed system. Faculty of Chemical Engineering and Natural Resource Engineering, Universiti Teknologi Malaisia. Research VOT 74526

    Google Scholar 

  12. Mishra P, Chakraverty A, Banerjee HD (1986) Studies on physical and thermal properties of rice husk related to its industrial application. J Mater Sci 21:2129–2132

    Google Scholar 

  13. Real C, Alcala MD, Criado JM (1996) Preparation of silica from rice husk. J Am Ceram Soc 79:2012–2016

    CAS  Google Scholar 

  14. Liou TH (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci Eng A364:313–323

    CAS  Google Scholar 

  15. Umeda J, Kondoh K, Michiura Y (2007) Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Mater Trans 48(12):3095–3010

    CAS  Google Scholar 

  16. Watari T, Nakata A, Kiba Y, Torikai T, Yada M (2006) Fabrication of porous SiO2/C composite from rice husk. J Eur Ceram Soc 26:797–801

    CAS  Google Scholar 

  17. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by single-stage chemical activation method at low retention times. Bioresour Technol 99:6809–6816

    CAS  Google Scholar 

  18. Sekar N, Virutha Giri T (2005) Preparation of sodium silicate from waste rice husk. Chem Eng World 40:81–85

    CAS  Google Scholar 

  19. Basu PK, King CJ, Lynn S (1973) Manufacture of silicon tetrachloride from rice hulls. AIChE J 19:439–445

    CAS  Google Scholar 

  20. Seo ESM, Andreoli M, Chiba R (2003) Silicon tetrachloride production by chlorination method using rice husk as raw material. J Mater Process Tech 141:351–356

    CAS  Google Scholar 

  21. Nandi KC, Mukherjee D, Biswas AK, Acharia HNA (1991) A novel and inexpensive method of production of silanes from rice husk and theirgas chromatographic analyses. Sol Energy Mater 22:161–164

    CAS  Google Scholar 

  22. Rahnman IA, Saleh MI (1995) Formation of β-sialon in the carbothermal reduction of digested rice husks. Mater Lett 23:157–161

    Google Scholar 

  23. Rodriguez-Lugo V, Ribio E, Gomez I, Torres-Martinez L, Castano VM (2002) Synthesis of silicon carbide from rice husk. Int J Environ Pollut 18:378–387

    CAS  Google Scholar 

  24. Adylov GT, Faiziev ShA, Paizullakhanov MS, Mukhsimov S, Nodirmatov E (2003) Silicon carbide materials obtained from rice husk. Tech Phys Lett 29:221–223

    CAS  Google Scholar 

  25. Sujirote K, Leangsuwan P (2003) Silicon carbide formation from pretreated rice husks. J Mater Sci 38:4739–4744

    CAS  Google Scholar 

  26. Kumar B, Godkhindi MM (1996) Studies on the formation of SiC, Si3N4, and Si2N2O during pyrolysis of rice husks. J Mater Sci Lett 15:403–405

    CAS  Google Scholar 

  27. Real C, Alcala MD, Criado JM (2004) Synthesis of silicon nitride from carbothermal reduction of rice husk by the constant-rate-thermal-analysis (CRTA) method. J Am Ceram Soc 87:75–78

    CAS  Google Scholar 

  28. Kurama S, Kurama H (2008) The reaction kinetics of rice husk based cordierite ceramics. Ceram Int 34:269–272

    CAS  Google Scholar 

  29. Han H-W, Huang C-Y, Liu HS (1999) Formation of gehlenite (Ca2Al2SiO7) by carbothermal reduction of carbonized rice hulls. J Ceram Soc Jpn 107:1115–1120

    CAS  Google Scholar 

  30. Hunt LP, Dismukes JP, Amick JA, Schei A, Larsen KK (1984) Rice husk as a raw material from producing silicon. J Electrochem Soc 131:1683–1686

    CAS  Google Scholar 

  31. Ghosh TB, Nandi KC, Acharya HN, Mukherjee D (1991) XPS studies of magnesium silicide obtained from rice husk. Mater Lett 11:6–9

    CAS  Google Scholar 

  32. Shimokawa K, Sekiguchi I, Suzuki Y, Ueda Y (1992) Synthesis of Si-O-C fibers from rice husk carbide-explanation of formation condition. J Ceram Soc Jpn 100:1111–1119

    Google Scholar 

  33. Gokhal KVGK, Dalai AK, Rao MS (1986) Thermal characteristics of synthetic sodium zeolites prepared with silica from rice-husk ash. J Term Anal 31:33–39

    Google Scholar 

  34. Paul H, Wang HP, Lin KS, Huang YJ, Li MC, Tsaur LK (1998) Synthesis of zeolite ZSM-48 from rice husk ash. J Hazard Mater 58:147–152

    Google Scholar 

  35. Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res 45:5165–5171

    CAS  Google Scholar 

  36. Srivastava VC, Mall ID, Mishra IM (2008) Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash. Colloid Surf A 312:172–184

    CAS  Google Scholar 

  37. Lakshmi UR, Srivastava VC, Mall ID, Lataye DH (2009) Rice husk ash an effective adsorbent: evaluation of adsorptive characteristics for Indigo Carmine dye. J Environ Manag 90:710–720

    CAS  Google Scholar 

  38. Tsai MT, Chang FW (2000) Characterization of rice husk ash-supported nickel catalysts prepared by ion exchange. Appl Catal A Gen 203:15–22

    Google Scholar 

  39. Chang FW, Kuo WY, Yang H (2005) Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation. Appl Catal Gen 288:53–61

    CAS  Google Scholar 

  40. Chang FW, Yang H, Roselin L, Kuo W (2006) Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl Catal Gen 304:30–39

    CAS  Google Scholar 

  41. Renu P, Radhika T, Sugunan S (2008) Characterization and catalytic activity of vanadia supported on rice husk silica promoted samaria. Catal Commun 9:584–589

    CAS  Google Scholar 

  42. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polymer Tech 18(4):351–363

    CAS  Google Scholar 

  43. Chaudhary DS, Jollands MC, Cser F (2002) Understanding rice hull ash as fillers in polymers: a review. Silicon Chem 1:281–289

    CAS  Google Scholar 

  44. Chaudhary DS, Jollands MC, Cser F (2004) Recycling rice husk ash: a filler material for polymeric composites. Adv Polym Technol 23:147–155

    CAS  Google Scholar 

  45. Siriwardena S, Ismail H, Ishiaku US (2001) White rice husk ash filled ethylene-propylene-diene terpolymer/polypropylene blends: effect of dynamic vulcanization and filler loading. Polym Plast Technol Eng 40:519–538

    CAS  Google Scholar 

  46. Premalal HGB, Ismail H, Baharin A (2003) Effect of processing time on the tensile, morphological and thermal properties of rice husk powder-filled polypropylene composites. Polymer Plast Tech Eng 42:827–851

    CAS  Google Scholar 

  47. Kim HS, Yang HS, Kim HJ, Park HJ (2004) Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Cal 76:395–404

    CAS  Google Scholar 

  48. Ismail H, Chung FL (1999) The effect of partial replacement of silica by white rice husk ash in natural rubber composites. Int J Polym Mater 43:301–312

    CAS  Google Scholar 

  49. Ismail H, Mega L, Khalil HPS (2001) Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polym Int 50:606–611

    CAS  Google Scholar 

  50. Arayapranee W, Naranong N, Rempel GL (2005) Application of rice husk ash as fillers in the natural rubber industry. J Appl Polym Sci 98:34–41

    CAS  Google Scholar 

  51. Jauberthie R, Rendell F, Tamba SE, Cisse IK (2003) Properties of cement-rice husk mixture. Constr Build Mater 17:239–243

    Google Scholar 

  52. Basha EA, Hashim R, Mahmud HB, Muntohar AS (2005) Stabilization of residual soil with rice husk ash and cement. Constr Build Mater 19:448–453

    Google Scholar 

  53. Ismail H, Nizam JM, Khalil HPS (2001) The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20:125–133

    CAS  Google Scholar 

  54. Panthapulakkal S, Law S, Sain M (2005) Enhancement of process ability of rice husk filled high-density polyethylene composite profiles. J Thermoplastic Compos Mater 18:445–458

    CAS  Google Scholar 

  55. Panthapulakkal S, Sain M, Law S (2005) Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polym Int 54:137–142

    CAS  Google Scholar 

  56. Fuad MYA, Jamaludin M, Ishak ZAM, Omar AKM (1993) Rice husk ash as filler in polypropylene: Preliminary study. Int J Polym Mater 19:75–92

    CAS  Google Scholar 

  57. Fuad MYA, Mustafah J, Mansor MS (1995) Thermal properties of polypropylene/rice husk ash composites. Polym Int 38:33–43

    CAS  Google Scholar 

  58. Fuad MYA, Ismail Z, Mansor MS, Ishak ZAM, Omar AKM (1995) Mechanical properties of rice husk ash/polypropylene composites. Polym J 27:1002–1015

    CAS  Google Scholar 

  59. Siriwardena S, Ismail H, Ishiaku US (2003) A comparison of the mechanical properties and water adsorption behavior of white rice husk and silica filled polypropylene composites. J Reinforc Plast Compos 22:1645–1666

    CAS  Google Scholar 

  60. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Google Scholar 

  61. Toro P, Quijada R, Murillo O, Yazdani-Pedram M (2005) Study of the morphology and mechanical properties of polypropylene composites with silica or rice-husk. Polym Int 54:730–734

    CAS  Google Scholar 

  62. Ismail H, Ishiaku US, Arinab AR, Izhak Z (1997) The effect of rice husks ash as filler for epoxidized natural rubber compounrs. Int J Polym Mater 36:39–44

    CAS  Google Scholar 

  63. Ismail H, Mohamad Z, Bakar AA (2003) A comparative study of processing, mechanical properties, thermo-oxidative aging, water adsorption, and morphology of rice husk powder and silica fillers in polystyrene/styrene butadiene rubber blends. Polymer Plast Tech Eng 42(1):81–103

    CAS  Google Scholar 

  64. Siriwardena S, Ismail H, Ishiaku US (2001) A comparison of white-rice husk ash and silica as a fillers of ethylene-propylene-diene terpolymer vulcanizates. Polym Int 50:707–713

    CAS  Google Scholar 

  65. Siriwardena S, Ismail H, Ishiaku US (2002) Water adsorption behaviour and its effect on tensile properties of ethylene-propylene-diene-terpolymer/polypropylene/filler ternary composites: a preliminary study. Polym Plast Technol Eng 41(3):419–433

    CAS  Google Scholar 

  66. Stefany PM, Garcia D, Lopez J, Jimenez A (2005) Thermogravimetric analysis of composites obtained from sintering of rice husk-scrap tire mixtures. J Therm Anal Calorim 81:315–320

    Google Scholar 

  67. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28:63–72

    CAS  Google Scholar 

  68. Chaudhary DS, Jollands MC (2004) Characterization of rice hull ash. J Appl Polym Sci 93:1–8

    CAS  Google Scholar 

  69. Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plants. Mater Lett 57:1723–1731

    CAS  Google Scholar 

  70. Vlaev LT, Markovska IG, Lyubchev LA (2003) Non-isothermal kinetics of pyrolysis of rice husk. Therochim Acta 406:1–7

    CAS  Google Scholar 

  71. Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28

    CAS  Google Scholar 

  72. Mansaray KG, Ghaly AE (1999) Kinetics of the thermal degradation of rice husk in nitrogen atmosphere. Energy Sources 21:773–784

    CAS  Google Scholar 

  73. Ghaly AE, Mansaray KG (1999) Comparative study on the thermal degradation of rice husk in various atmospheres. Energy Sources 21:867–881

    CAS  Google Scholar 

  74. Petro F, Anthony EJ, Disea DL, Friedrich FD (1987) Combustion trials of rice husk in a pilot-scale fluidized bed. In: Proceeding of the 9th international conference on fluidized bed combustion 2:1123–1127

    Google Scholar 

  75. Niessen WR (1995) Combustion and incineration processes: applications in environmental engineering, 2nd edn. Marcel, New York

    Google Scholar 

  76. Natarajan E, Nordin A, Rao AN (1998) Overview of combustion and gasification of rice husk in fluidized bed reactor. Biomass Bioenergy 14(5/6):533–546

    CAS  Google Scholar 

  77. Bhattacharya SC, Shah N, Alikhani Z (1984) Some aspects of fluidized bed combustion of paddy husk. Appl Energy 16:307–316

    Google Scholar 

  78. Mansaray KG, Ghaly AE, Al-Taweel AM, Hamdullahpur F, Ugursal VI (1999) Air gasification of rice husk in a dual distributor type fluidized bed gasifier. Biomass Bioenergy 17:315–332

    CAS  Google Scholar 

  79. Huang S, Jing S, Wang J, Wang Z, Jin Y (2001) Silica white obtained from rice husk in a fluidized bed. Power Technol 117:232–238

    CAS  Google Scholar 

  80. Armesto L, Bahillo A, Veijionen K, Cabanillas A, Otero J (2002) Combustion behaviour of rice husk in a bubbling fluidized bed. Biomass Bioenergy 23:171–179

    CAS  Google Scholar 

  81. Skrifvars B-J, Yrjas P, Kinni J, Stiefen P, Hupa M (2005) The fouling behavior of rice husk ash in fluidized-bed combustion. 1. Fuel characteristics. Energy Fuels 19:1503–1511

    CAS  Google Scholar 

  82. Skrifvars B-J, Yrjas P, Lauren T, Kinni J, Tran H, Hupa M (2005) The fouling behavior of rice husk ash in fluidized-bed combustion. 2. Pilot-scale and full-scale measurements. Energy Fuels 19:1512–1519

    CAS  Google Scholar 

  83. Yusof IM, Farid NA, Zainal ZA, Azman M (2008) Characterization of rice husk for cyclone gasifier. J Appl Sci 8(4):622–628

    CAS  Google Scholar 

  84. Singh RI, Mohapatra SK, Gangacharyulu D (2008) Studies in an atmospheric bubbling fluidized-bed combustor 10 MW power plant based on rice husk. Energy Convers Manage 49:3086–3103

    CAS  Google Scholar 

  85. Rozainee M, Ngo SP, Salema AA, Tan KG (2008) Fluidized bed combustion of rice husk to produce amorphous siliceous ach. Energy for Sustainable Development 12(1):33–42

    Google Scholar 

  86. Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN (2008) Effect of fluidizing velocity on the combustion of rice husk in a bench-scale fluidized bed combustor for the production of amorphous rice husk ash. Bioresour Technol 99:703–713

    CAS  Google Scholar 

  87. Janvijitsakul K, Kuprianov VI (2008) Major gaseous and PAN emissions from fluidized-bed combustor firing rice husk with high combustion efficiency. Fuel Process Technol 89:777–787

    CAS  Google Scholar 

  88. Estevez M, Vargas S, Castano VM, Rodriguez R (2009) Silica nano-particles produced by worms through a bio-digestion process of rice husk. J Non Cryst Solids 355:844–850

    CAS  Google Scholar 

  89. Kulasekaran S, Linjewile TM, Agarwal PK, Biggs MJ (1998) Combustion of a porous char particle in an incipiently fluidized bed. Fuel 77:1549–1560

    CAS  Google Scholar 

  90. Mansaray KG, Ghaly AE (1998) Aglomeration characteristics of silica sand-rice husk mixture s at elevated temperatures. Energy Sources 20:631–652

    CAS  Google Scholar 

  91. Mansaray KG, Ghaly AE (1998) Thermogravimetric analysis of rice husk in an air atmosphere. Energy Sources 20:653–663

    CAS  Google Scholar 

  92. Rao TR, Ram JV (2001) Minimum fluidization velocities of mixtures of biomass and sand. Energy 26:633–644

    CAS  Google Scholar 

  93. Turmanova S, Genieva S, Vlaev L (2009) Thermal degradation of rice husks: structure, morphology, thermal and kinetics characteristics – review. Chem Technol Ind J 18:754–769

    Google Scholar 

  94. Fang M, Yang L, Chen G, Shi Z, Luo Z, Cen K (2004) Experimental study on rice husk combustion in a circulating fluidized bed. Fuel Proc Technol 85:1273–1282

    CAS  Google Scholar 

  95. Galgano A, Salatino P, Grescitelli S, Scala F, Maffetonne P (2005) A model of the dynamics of a fluidized bed combustor burning biomass. Combust Flame 140:371–384

    CAS  Google Scholar 

  96. Qiaoqun S, Huilin L, Wentie L, Yurong H, Lidan Y, Gidaspow D (2005) Simulation and experiment of segregating/mixing of rice husk-sand mixture in a bubbling fluidized bed. Fuel 84:1739–1748

    Google Scholar 

  97. Turmanova SCh, Dimitrova AS, Vlaev LT (2008) Study of polypropene composites filled with rice husk ash. Oxidation Commun 31:465–481

    CAS  Google Scholar 

  98. Genieva SD, Turmanova SCh, Dimitrova AS, Vlaev LT (2008) Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. J Therm Anal Calorim 93:387–396

    CAS  Google Scholar 

  99. Park BD, Wi SG, Lee KH, Singh AP, Yoon TH, Kim YS (2003) Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenergy 25:319–327

    CAS  Google Scholar 

  100. Patel M, Karera A, Prasanna P (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J Mater Sci 22:2457–2464

    CAS  Google Scholar 

  101. Hanafi S, Abo-El-Enein SA, Ibrahim DM, El-Hemaly SA (1980) Surface properties of silicas produced by thermal treatment of rice husk ash. Thermochim Acta 37:137–143

    CAS  Google Scholar 

  102. Ibrahim DM, El-Hemaly SA, Abdel-Kerim FM (1980) Study of rice husk ash silica by infrared spectroscopy. Thermochim Acta 37:307–314

    CAS  Google Scholar 

  103. Amorim JJ, Eliziario SA, Gouveia DS, Simoes ASM, Santos JCO, Conceicao MM, Souza AG, Trindade MFS (2004) Thermal analysis of the rice and by-products. J Therm Anal Calorim 75:393–399

    CAS  Google Scholar 

  104. Kennedy LJ, Vijaya JJ, Sekaran G (2004) Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind Eng Chem Res 43:1832–1838

    CAS  Google Scholar 

  105. Moreland J (1979) The first decade of inorganic and organic surface modification. In: Society of the plastics industry, reinforced plastics/composites industries, proceedings of the 34th annual conference, Society of Plastics Industry, New York, Section 14-A, 30 Jan–2 Feb 1979

    Google Scholar 

  106. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Google Scholar 

  107. Yang HS, Kim HJ, Park HJ, Park HJ, Lee BJ, Hwang TS (2007) Effect of compatibilizing on rice-husk flour reinforced polypropylene composites. Compos Struct 77:45–55

    Google Scholar 

  108. Ishak ZAM, Baker AA (1995) An the investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR). Eur Polym J 31:259–269

    CAS  Google Scholar 

  109. Ismail H, Ishaku US, Arinab AR, Ishak ZAM (1998) Epoxidized natural rubbercomposites: effect of vulcanization systems and fillers. Polym Plast Technol Eng 37:469–474

    CAS  Google Scholar 

  110. Ismail H, Chung FL (1998) Partial replacement of silica by white rice husk ash in natural rubber composites: the effect of bonding agents. Iran Polym J 7:255–261

    CAS  Google Scholar 

  111. Costa HMD, Visconte LLY, Nunes RCR, Furtado CRG (2000) The effect of couplung agent and chemical treatment on rice husk ash-filled natural rubber composites. J Appl Polym Sci 76:1019–1027

    Google Scholar 

  112. Mehta PK (1977) Properties of blended cements made from rice husk ash. J Am Concr Inst 74:440–446

    CAS  Google Scholar 

  113. James J, Rao MS (1986) Reaction product of lime and silica from rice husk ash. Cem Concr Res 16:67–73

    CAS  Google Scholar 

  114. Zhang MH, Lastra R, Malhorta VM (1996) Rice-husk ash paste and concrete: some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem Concr Res 26:963–977

    CAS  Google Scholar 

  115. Rodrigues FA, Monteiro PJM (1999) Hydrothermal synthesis of cements from rice hull ash. J Mater Sci Lett 18:1551–1552

    CAS  Google Scholar 

  116. Ajiwe VIE, Okeke CA, Akigew FC (2000) A preliminary study of manufacture of cement from rice husk ash. Bioresour Technol 73:37–39

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the European Union Program 2007BG161PO003 and Bulgarian Project SIP-02-4 for supporting and development of starting innovation enterprises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Genieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genieva, S.D., Turmanova, S.C., Vlaev, L.T. (2011). Utilization of Rice Husks and the Products of Its Thermal Degradation as Fillers in Polymer Composites. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_13

Download citation

Publish with us

Policies and ethics