Skip to main content

Pineapple Leaf Fibers and PALF-Reinforced Polymer Composites

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

Pineapple leaf fibers (PALF) have long been known as textile materials in many countries. Despite being mechanically excellent and environmentally sound, PALF are the least-studied natural fibers, especially for reinforcing composites. This article presents a survey of research works carried out on PALF and PALF-reinforced composites. It reviews PALF extraction, fiber characterization, and PALF applications, modification of PALF, and manufacture and properties of PALF-reinforced composites. With increasing importance of pineapple and pineapple plantation area, value-added applications of PALF as reinforcing fibers in polymer composites must be developed in order to increase “resource potential” of pineapple and consequently energize the utilization of PALF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fiber. Bioresources 1:220–232

    Google Scholar 

  • Abdul Khalil HPS, Issam AM, Ahmad Shakri MT, Suriani R, Awang AY (2007) Conventional agro-composites from chemically modified fibres. Ind Crops Prod 26:315–323

    Article  CAS  Google Scholar 

  • Abu-Sharkh BF, Hamid H (2004) Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab 85:967–973

    Article  CAS  Google Scholar 

  • Ahmed OH, Husni MH, Anuar AR, Hanafi MM (2002) Effect of residue management practices on yield and economic viability of Malaysian pineapple production. J Sustain Agric 20:83–94

    Article  Google Scholar 

  • Ahmed OH, Husni MH, Anuar AR, Hanafi MM (2004) Towards sustainable use of potassium in pineapple waste. Sci World J 4:1007–1013

    CAS  Google Scholar 

  • Anon (1992) A guide to unusual natural fibers: pineapple leaf fiber (PALF). Textiles 21:21

    Google Scholar 

  • Anon (2008a) http://en.wikipedia.org/wiki/Pineapple. Accessed 1 July 2008

  • Anon (2008b) www.mpib.gov.my. Accessed 28 Feb 2008

  • Anon (2008c) http://www.uga.edu/fruit/pinapple.html. Accessed 1 July 2008

  • Anon (2008d) http://www.fao.org/ag/AGL/aglw/cropwater/pineapple.stm. Accessed 28 July 2008

  • Antich P, Vazquez A, Mondragon I, Bernal C (2006) Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos A 37:139–150

    Article  CAS  Google Scholar 

  • Araujo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93:1770–1775

    Article  CAS  Google Scholar 

  • Arib RMN, Sapuan SM, Ahmad MMHM, Paridah MT, Khairul Zaman HMD (2006) Mechanical properties of pineapple leaf fiber reinforced polypropylene composites. Mater Des 27:391–396

    Article  CAS  Google Scholar 

  • Bartholomew DP, Paull RE, Rohrbach KG (2002) The pineapple: botany, production and uses. CAB International, United Kingdom

    Google Scholar 

  • Basu A, Chellamani KP, Kumar PR (2003) Jute and pineapple leaf fibres for the manufacture of technical textiles. Asian Text J 12:94–96

    Google Scholar 

  • Bel-Berger P, Von Hoven T, Ramaswamy GN, Kimmel L, Boylston E (1999) Textile technology. J Cotton Sci 3:60–70

    CAS  Google Scholar 

  • Benjamin Y, van Weenen H (2000) Design for sustainable development: crops for sustainable enterprise. European Foundation for the Improvement of Living and Working Conditions, Ireland

    Google Scholar 

  • Bhaduri SK, Sen SK, Dasgupta PC (1983) Structural studies of an acidic polysaccharide isolated from the leaf fibre of pineapple (Ananas comosus MERR). Carbohydr Res 121:211–220

    Article  CAS  Google Scholar 

  • Bhattacharya TB, Biswas AK, Chatterjee J, Pramnick D (1986) Short pineapple leaf fibre reinforced rubber composites. Plast Rubb Process Appl 6:119–125

    Google Scholar 

  • Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. Taylor & Francis, FL, Boca Raton

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym 24:221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    Article  CAS  Google Scholar 

  • Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A 37:423–429

    Article  Google Scholar 

  • Chand N, Hashmi SAR (1993) Mechanical properties of sisal fibre at elevated temperatures. J Mater Sci 28:6724–6728

    Article  CAS  Google Scholar 

  • Cueto CU, Quintos AG, Peralta CN, Palmario MS (1978) Pineapple fibres: the retting process II. NSDB Technol J :73–79

    Google Scholar 

  • Danyadi L, Moczo J, Pukanszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos A 41:199–206

    Article  Google Scholar 

  • Dash BN, Sarkar M, Rana AK, Mishra M, Mohanty AK, Tripathy SS (2002) A study on biodegradable composite prepared from jute felt and polyesteramide (BAK). J Reinf Plast Compos 21:1493–1503

    Article  CAS  Google Scholar 

  • de Albuquerque AC, Joseph K, de Carvalho LH, d’Almeida JRM (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos Sci Technol 60:833–844

    Article  Google Scholar 

  • Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789

    Article  CAS  Google Scholar 

  • George J, Joseph K, Bhagawan SS, Thomas S (1993) Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene. Mater Lett 18:163–170

    Article  CAS  Google Scholar 

  • George J, Bhagawan SS, Prabhakaran N, Thomas S (1995) Short Pineapple-leaf-fiber-reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854

    Article  CAS  Google Scholar 

  • George J, Bhagawan SS, Thomas S (1996a) Thermogravimetric and dynamic mechanical thermal analysis of pineapple fiber reinforced polyethylene composites. J Therm Anal 47:1121–1140

    Article  CAS  Google Scholar 

  • George J, Janardhan R, Anand JS, Bhagawan SS, Sabu T (1996b) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37:5421–5431

    Article  CAS  Google Scholar 

  • George J, Bhagawan SS, Thomas S (1997) Electrical of pineapple fiber reinforced polyethylene composites. J Polym Eng 17:383–404

    Google Scholar 

  • George J, Bhagawan SS, Thomas S (1998a) Improved interactions in chemically modified pineapple leaf fibre reinforced polyethylene composites. Compos Interf 5:201–223

    Article  CAS  Google Scholar 

  • George J, Bhagawan SS, Thomas S (1998b) Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple fibers. Compos Sci Technol 58:1471–1485

    Article  CAS  Google Scholar 

  • George J, Sreekala MS, Thomas S, Bhagawan SS, Neelakantan NR (1998c) Stress relaxation behavior of short pineapple fiber reinforced polyethylene composites. J Reinf Plast Compos 17:651–672

    CAS  Google Scholar 

  • George J, Thomas S, Bhagawan SS (1999) Effects of strain rate and temperature on tensile failure of pineapple fiber reinforced polyethylene composites. J Thermoplast Compos Mater 12:443–464

    CAS  Google Scholar 

  • Ghosh SK, Dey SK, Dey A (1988) Tensile behaviour and processing of bleached yarn from pineapple leaf fibre. Indian J Text Res 13:17–20

    CAS  Google Scholar 

  • Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos A 38:1811–1820

    Article  Google Scholar 

  • Hayavadana J, Jacob M, Sampath G (2003) Diversified product of pine apple leaf fibres. Man Made Text India 46:301–305

    CAS  Google Scholar 

  • Hepworth DG, Hobson RN, Bruce DM, Farrent JW (2000) The use of unretted hemp fibre in composite manufacture. Compos A 31:1279–1283

    Article  Google Scholar 

  • Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66:2719–2725

    Article  CAS  Google Scholar 

  • Joffe R, Andersons J, Wallstrom L (2003) Strength and adhesion characteristics of elementary flax fibers with different surface treatments. Compos A 34:603–612

    Article  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala RD, Thomas S (2009) Hybrid composites. In: Thomas S, Pothan LA (eds) Natural fiber reinforced polymer composites: macro to nanoscale. Old City, Philadelphia, pp 315–328

    Google Scholar 

  • Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  • Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos A 35:357–362

    Article  Google Scholar 

  • Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym Test 27:801–806

    Article  CAS  Google Scholar 

  • Kumar KBK, Prabhakaran G, Muruganandam R, Raghu P, Namasivayam N, Rajendran K, Durairaj V, Kannan G (1997) Study on pineapple fiber processing. Colourage 44:27–30

    CAS  Google Scholar 

  • Li H III (1998) Synthesis, characterization and properties of vinyl ester matrix resins. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA

    Google Scholar 

  • Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46:2710–2721

    Article  CAS  Google Scholar 

  • Luo S, Netravali AN (1995) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibres and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 57:843–854

    Google Scholar 

  • Luo S, Netravali AN (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J Mater Sci 34:3709–3719

    Article  CAS  Google Scholar 

  • Mallick PK (1993) Fiber-reinforced composites: materials, manufacturing, and design. Dekker, New York

    Google Scholar 

  • Mangal R, Saxena NS, Sreekala MS, Thomas S, Singh K (2003) Thermal properties of pineapple leaf fiber reinforced composites. Mater Sci Eng A 339:281–285

    Article  Google Scholar 

  • Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Potentially of pineapple leaf fibre as reinforcement in PALF-polyester composite: surface modification and mechanical performance. J Reinf Plast Compos 20:322–334

    Article  Google Scholar 

  • Mishra S, Tripathy SS, Misra M, Mohanty AK, Nayak SK (2002) Novel eco-friendly biocomposites: biofiber reinforced biodegradable polyester amide composites-fabrication and properties evaluation. J Reinf Plast Compos 21:55–70

    CAS  Google Scholar 

  • Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385

    Article  CAS  Google Scholar 

  • Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974

    Article  CAS  Google Scholar 

  • Mohamed AR (2010) Physical, mechanical and thermal properties of pineapple leaf fibers (PALF) and PALF-reinforced vinyl ester composites. PhD Thesis, Universiti Putra Malaysia

    Google Scholar 

  • Mohamed AR, Sapuan SM, Shahjahan M, Khalina A (2009) Characterization of pineapple leaf fibers from selected Malaysian cultivars. J Food Agric Environ 7:235–240

    CAS  Google Scholar 

  • Mohamed AR, Sapuan SM, Shahjahan M, Khalina A (2010a) Effects of simple abrasive combing and pretreatments on properties of pineapple leaf fibers (PALF) and PALF-vinyl ester composite adhesion. Polym Plast Technol Eng 49:972–978

    Article  CAS  Google Scholar 

  • Mohamed AR, Sapuan SM, Shahjahan M, Khalina A (2010b) Selected properties of hand-laid and compression molded pineapple leaf fiber (PALF)-reinforced vinyl ester composites. Int J Mech Mater Eng 5:68–73

    Google Scholar 

  • Mohanty AK, Parija S, Misra M (1996) Ce(IV)-N-acetylglycine initiated graft copolymerization of acrylonitrile onto chemically modified pineapple leaf fibers. J Appl Polym Sci 60:931–937

    Article  CAS  Google Scholar 

  • Mohanty AK, Khan MA, Hinrichsen G (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Compos Sci Technol 60:1115–1124

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers and biocomposites: an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. Taylor & Francis, FL, Boca Raton

    Chapter  Google Scholar 

  • Mukherjee PS, Satyanarayana KG (1986) Structure and properties of some vegetable fibres: Part 2 pineapple fiber. J Mater Sci 21:51–56

    Article  Google Scholar 

  • Mukhopadhyay S, Srikanta R (2008) Effect of ageing of sisal fibres on properties of sisal: polypropylene composites. Polym Degrad Stab 93:2048–2051

    Article  CAS  Google Scholar 

  • Munder F, Furll C, Hempel H (2005) Processing of bast fiber plants for industrial application. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. Taylor & Francis, FL, Boca Raton

    Google Scholar 

  • Munirah M, Rahmat AR, Hassan A (2007) Characterization and treatment of pineapple leaf fibre thermoplastic composite for construction application. Research Report, Department of Polymer Engineering, Faculty Chemical and Faculty Natural Resources, Universiti Teknologi Malaysia, pp 1–63

    Google Scholar 

  • Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7:120–133

    Google Scholar 

  • Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibre for composite reinforcement. In: 2nd International wood and natural fibre composites symposium, Kassel, Germany

    Google Scholar 

  • Nair MKC, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529

    Article  Google Scholar 

  • Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286

    Article  CAS  Google Scholar 

  • Palmario MS, Cueto CU, Imperial ZS, Tayco SA, Soriaga RP, Buenaventure RV, De Guzman MC (1976) Pineapple fibres: the retting process. Sci Rev 17(4):8–16

    Google Scholar 

  • Paul NG (1980) Some methods for the utilisation of waste from fibre crops and fibre waste from other crops. Agric Waste 2:313–318

    Article  Google Scholar 

  • Pavithran CPS, Mukherjee M, Brahmakumar DAD (1987) Impact properties of natural fibre composites. J Mater Sci Lett 6:882–884

    Article  Google Scholar 

  • Payae Y, Lopattananon N (2009) Adhesion of pineapple-leaf fiber to epoxy matrix: the role of surface treatments. Songklanakarin J Sci Technol 31:189–194

    Google Scholar 

  • Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos Sci Technol 67:2369–2376

    Article  CAS  Google Scholar 

  • Rowell RM, Han JS (2000) Characterization and factors effecting fibre properties. In: Frolini E, Leao AL, Mattosso LHC (eds) Natural polymers and agrofibres composites. San Carlos, Brazil, pp 115–127

    Google Scholar 

  • Saha SC, Das BK, Ray PK, Pandey SN, Goswami K (1990) SEM studies of the surface fracture morphology of pineapple leaf fibres. Text Res J 60:726–731

    Article  CAS  Google Scholar 

  • Samal RK, Bhuyan BL (1994) Chemical modification of lignocellulosic fibers I. Functionality changes and graft copolymerization of acrylonitrile onto pineapple leaf fibers; their characterization and behavior. J Appl Polym Sci 52:1675–1685

    Article  CAS  Google Scholar 

  • Samal RK, Giri G, Bhuyan BL (1994) Chemical modification of lignocellulosic fibers II. Functionality changes and graft copolymerization of methyl methacrylate onto pineapple leaf fibers. J Polym Mater 11:113–119

    CAS  Google Scholar 

  • Sanadi AR, Prasad SV, Rohatgi PK (1986) Sunhemp fibre-reinforced polyester – Part 1. Analysis of tensile and impact properties. J Mater Sci 21:4299–4304

    Article  CAS  Google Scholar 

  • Sharma U (1981) Investigations on the fibers of pineapple [Ananas comosus (L). MERR.] leaves. Carbohydr Res 97:323–329

    Article  CAS  Google Scholar 

  • Siregar JP, Sapuan SM (2009) Mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. In: Sapuan SM (ed) Research in natural fibre reinforced polymer composites. UPM, Serdang, Selangor, Malaysia

    Google Scholar 

  • Siregar JP, Sapuan SM, Rahman MZA, Zaman HMDK Characterization and chemical composition of short pineapple leaf fibres (PALF). In: SM Sapuan (ed) Proceeding of postgraduate seminar on natural fibre composites, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, 10 June 2008, pp 19–24

    Google Scholar 

  • Siregar JP, Sapuan SM, Rahman MZA, Zaman HMDK (2009) The effect of compatibilising agent and surface modification on the physical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Polym Polym Compos 17:379–384

    CAS  Google Scholar 

  • Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos B 40:628–632

    Article  Google Scholar 

  • Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibres of Brazil: Part III – morphology and properties of Brazilian curauá fibres. Compos A 38:2227–2236

    Article  Google Scholar 

  • Tripathy PC, Misra M, Parija S, Mishra S, Mohanty AK (1999) Studies of Cu(II)-IO 4 initiated graft copolymerization of methyl methacrylate from defatted pineapple leaf fibres. Polym Int 48:868–872

    Article  CAS  Google Scholar 

  • Uma Devi L, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. Appl Polym Sci 64:1739–1748

    Article  Google Scholar 

  • Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos A 37:1368–1376

    Article  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41(7):806–819

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Putra Malaysia for the assistance received under the Fundamental Research Grant Scheme (grant number 5523413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sapuan, S.M., Mohamed, A.R., Siregar, J.P., Ishak, M.R. (2011). Pineapple Leaf Fibers and PALF-Reinforced Polymer Composites. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_12

Download citation

Publish with us

Policies and ethics