Skip to main content

Isora Fibre: A Natural Reinforcement for the Development of High Performance Engineering Materials

  • Chapter
  • First Online:
Book cover Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

In this chapter, the technical potential of a natural fibre namely “ISORA” has been examined as an effective reinforcing material to design and manufacture high performance eco friendly composites in various polymers like natural rubber, polyester, epoxy resin, etc.; “Isora” a bast fibre separated from the bark of Helicteres isora plant is an important raw material can be used for the preparation of cost-effective and eco friendly composites. Morphology and physical properties of these fibres have been studied. Density and microscopic methods are used to determine the cross-sectional area and diameter of fibre bundles. Surface modification by alkali treatment and silane treatment were tried. Tensile properties of the treated and untreated fibres were determined by density method. The thermal characteristics, crystallinty index, reactivity, and surface morphology of the untreated and treated fibres have been studied by TGA, DSC, DTA, WAXRD, FTIR, and SEM. Average tensile strength of the fibre decreased and density increased to some extent on treatment with alkali and silane. Chemical constituents of the fibre were determined according to ASTM standards. SEM studies showed that as a result of chemical treatment fibre surface becomes rough promoting the fibre matrix adhesion which in turn improves the mechanical performance of the composites. Thermal analysis showed that chemical modification improves the thermal stability of the fibre. The strength of the fibre was theoretically calculated. For the successful design of a composite material using isora fibre and various polymers like natural rubber and thermosets (polyester and epoxy resin) several parameters like fibre aspect ratio, fibre orientation, fibre loading, chemical modification of fibre surface, fibre matrix adhesion that influences the performance of a short fibre composite were studied and optimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scola DA (1974) In: Broutman LJ, Krock RH (eds) Composite materials, vol 6. Academic, New York, pp 239–245

    Google Scholar 

  2. Ismail H, Rosnah N (1997) Polym International 43:223–230

    Google Scholar 

  3. Edyham MR, Ismail H (2002) Eur Polym J 38:39–47

    Article  Google Scholar 

  4. Ray D, Sarkar BK, Rana AK (2001) Bull Mater Sci 24(2):129–135

    Article  CAS  Google Scholar 

  5. Geethamma V, Joseph R, Thomas S (1995) J Appl Polym Sci 55:583–594

    Article  CAS  Google Scholar 

  6. Sreekala M, Kumaran M, Thomas S (1997) J Appl Polym Sci 66:821–835

    Article  CAS  Google Scholar 

  7. Liu C, Cuculo J, Allen T (1991) J Appl Polym Sci Polym Phys 29:181–196

    Article  CAS  Google Scholar 

  8. Pothen L, Neelakandan NR, Thomas S (1997) J Reinf Plast Comp 16(8):744–765

    Google Scholar 

  9. Ansell M, Mwaikambo LY (2002) J Appl Polym Sci 84(12):2222–2223

    Article  Google Scholar 

  10. Devi L, Bhagawan S, Thomas S (1997) J Appl Polym Sci 64:1739–1748

    Article  CAS  Google Scholar 

  11. Chen X, Guo Q, Mi Y (1998) J Appl Polym Sci 69:1891–1899

    Article  CAS  Google Scholar 

  12. Punnoose T (1953) Plant fibres. Indian Text J 63:388–400

    CAS  Google Scholar 

  13. Krishnamurthy T (1993) Minor forests products of India. Oxford & IBH, New Delhi

    Google Scholar 

  14. Lovely M, Joseph KU, Rani J (2004) Prog Rubb Plast Recyc Technol 20(4):337–351

    Google Scholar 

  15. Joshy MK, Lovely M, Rani J (2005) Compos Interf 13(4–6):370

    Google Scholar 

  16. Ismail H, Rosnah N, Rozman HD (1997) Polymer 38(16):4059

    Article  CAS  Google Scholar 

  17. Geethamma VJ, Thomas S, Kuriakose B (1995) J Appl Polym Sci 55:583

    Article  CAS  Google Scholar 

  18. Belgacem MN, Btaille P (1994) J Appl Polym Sci 53:379

    Article  CAS  Google Scholar 

  19. Felix JM, Carlson CMG (1994) J Adhes Sci Technol 8(2):163

    Article  CAS  Google Scholar 

  20. Geethamma VJ, Thomas S (1998) Polymer 39:1483

    Article  CAS  Google Scholar 

  21. Sapieha S, Pupo JF (1989) J Appl Polym Sci 37:233

    Article  CAS  Google Scholar 

  22. Felix JM, Gatenholm P (1991) J Appl Polym Sci 42:609

    Article  CAS  Google Scholar 

  23. Bisanda BTN, Ansell MP (1991) Comp Sci Technol 41:167

    Article  Google Scholar 

  24. Ismail H, Edyham MR, Shuhelmy S (2002) Eur Polym J 38:39

    Article  CAS  Google Scholar 

  25. Uma Devi L, Bhagavan SS, Thomas S (1997) J Appl Polym Sci 64:1739–1748

    Article  Google Scholar 

  26. Dash BN, Rana AK, Mishra HK (2004) Polym Comp 20(1):62–71

    Article  Google Scholar 

  27. Satyanarayana KG, Pilli CKS, Sukumaran K (1982) J Mater Sci 17:2453

    Article  CAS  Google Scholar 

  28. Akita K, Kase M (1967) J Polym Sci A 5:833–848

    Article  CAS  Google Scholar 

  29. Aziz SH, Ansell M (2004) Comp Sci Technol 64:1219–1230

    Article  CAS  Google Scholar 

  30. Goetller LA, Shen KS (1983) Rubb Chem Technol 56:619

    Article  Google Scholar 

  31. Chakraborty SK, Setu DK (1982) Rubb Chem Technol 55:1286

    Article  CAS  Google Scholar 

  32. Czvikovszky T, Kovacs I (1985) J Appl Polym Sci 30:1827

    Article  Google Scholar 

  33. Maya J, Thomas S (2004) Comp Sci Technol 64:955

    Article  Google Scholar 

  34. Varghese S, Kuriakose B, Thomas S (1994) J Adhes Sci Technol 8(3):235

    Article  CAS  Google Scholar 

  35. Murthy VM, De SK (1982) Rubb Chem Technol 55:287

    Article  Google Scholar 

  36. Ray D, Sarkar BK, Das S, Rana AK (2002) Comp Sci Technol 62:911–917

    Article  CAS  Google Scholar 

  37. Aziz SH, Ansell MP (2004) Comp Sci Technol 63:283–293

    Google Scholar 

  38. Saha AK, Das S, Bhatta D, Mitra BC (1999) J Appl Polym Sci 71:1505–1513

    Article  CAS  Google Scholar 

  39. Gassan J, Bledzki AK (1999) Comp Sci Technol 59:1303–1309

    Article  CAS  Google Scholar 

  40. Varma DS, Varma M, Varma IK (1984) J Text Res 54:349

    Google Scholar 

  41. Sharma HSS, Fraser TW, Mc Call D, Lyons G (1995) J Text Inst 86:539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovely Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathew, L., Joshy, M.K., Joseph, R. (2011). Isora Fibre: A Natural Reinforcement for the Development of High Performance Engineering Materials. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_11

Download citation

Publish with us

Policies and ethics