Aggregate Quality of Service Computation for Composite Services

  • Marlon Dumas
  • Luciano García-Bañuelos
  • Artem Polyvyanyy
  • Yong Yang
  • Liang Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6470)


This paper addresses the problem of computing the aggregate QoS of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem are restricted to composite services with well-structured orchestration models. Yet, in existing languages such as WS-BPEL and BPMN, orchestration models may be unstructured. This paper lifts this limitation by providing equations to compute the aggregate QoS for general types of irreducible unstructured regions in orchestration models. In conjunction with existing algorithms for decomposing business process models into single-entry-single-exit regions, these functions allow us to cover a larger set of orchestration models than existing QoS aggregation techniques.


Service Composition Component Service Composite Service Service Computation Business Process Modeling Notation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for Efficient QoS-aware Service Composition. In: Proc. 18th Int. Conf. on World Wide Web, pp. 881–890. ACM Press, New York (2009)Google Scholar
  2. 2.
    Becker, C., Kulovits, H., Kraxner, M., Gottardi, R., Rauber, A.: An Extensible Monitoring Framework for Measuring and Evaluating Tool Performance in a Service-Oriented Architecture. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) Web Engineering. LNCS, vol. 5648, pp. 221–235. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent Bisimulations in Petri Nets. Acta Informatica 28(3), 231–264 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware binding and re-binding of composite web services. Systems and Software 81(10) (2008)Google Scholar
  5. 5.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows and Web Service Processes. Web Semantics 1(3), 281–308 (2004)CrossRefGoogle Scholar
  6. 6.
    Hwang, S.Y., Wang, H., Srivastava, J., Paul, R.A.: A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 596–609. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Information Sciences 177(23), 5484–5503 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation for Web Service Composition using Workflow Patterns. In: Proc. of Enterprise Distributed Object Computing Conf., pp. 149–159. IEEE, Los Alamitos (2004)Google Scholar
  9. 9.
    Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation in Web Service Compositions. In: Proc. IEEE Int. Conf. EEE, pp. 181–185 (2005)Google Scholar
  10. 10.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS Computation and Policing in Dynamic Web Service Selection. In: WWW Alt, pp. 66–73 (2004)Google Scholar
  12. 12.
    Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL compositions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 378–393. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Oulsnam, G.: Unravelling Unstructured Programs. Computer Journal 25(3) (1982)Google Scholar
  14. 14.
    Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10), 46–52 (2003)CrossRefGoogle Scholar
  15. 15.
    Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring Acyclic Process Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 276–293. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and Generalization of the Refined Process Structure Tree. In: Proc. of the 7th Int. Workshop on Web Services and Formal Methods, WS-FM (2010) (in press)Google Scholar
  17. 17.
    Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data and Knowledge Engineering 68(9), 793–818 (2009)CrossRefGoogle Scholar
  18. 18.
    Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  19. 19.
    Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for Web Services. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 132–144. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marlon Dumas
    • 2
  • Luciano García-Bañuelos
    • 2
  • Artem Polyvyanyy
    • 3
  • Yong Yang
    • 1
  • Liang Zhang
    • 1
  1. 1.School of Computer ScienceFudan UniversityChina
  2. 2.Institute of Computer ScienceUniversity of TartuEstonia
  3. 3.Hasso Plattner InstituteUniversity of PotsdamGermany

Personalised recommendations