Skip to main content

Abstract

The manual design of vision based robotic behaviors remains a substantial challenge due to the complexity of visual information. It takes an ample effort to draw meaningful relationships and constraints between the acquired image perception and the geometry of environment both empirically and programmatically. This contribution proposes an alternative framework for learning autonomous visual navigation behavior from demonstration examples by integrating 3D range and an omnidirectional camera. A programming by demonstration approach is utilized to learn the demonstrated trajectories as a mapping between visual features computed on the omnidirectional image onto a corresponding robot motion. Exhaustive tests are performed to identify the discriminant features in order to mimic the teacher demonstrations. The relationship between perception and action is learned from demonstrations by means of locally weighted regression and artificial neural networks. The experimental results on the mobile robot indicate that the acquired visual behavior is robust and is able to generalize and optimize its performance to environments not presented during training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)

    Article  Google Scholar 

  2. Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. AI Review 11, 11–73 (1997)

    Google Scholar 

  3. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Springer Handbook of Robotics, pp. 1371–1394 (2008)

    Google Scholar 

  4. Bishop, C.: Neural Networks for Pattern Recognition, 1st edn. Oxford University Press, USA (1996)

    MATH  Google Scholar 

  5. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. J. Intell. Robotics Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  6. Dillmann, R., Rogalla, O., Ehrenmann, M., Zöllner, R., Bordegoni, M.: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm. In: 9th Intl. Symp. of Robotics Research (ISRR), pp. 229–238 (1999)

    Google Scholar 

  7. Ekvall, S., Kragic, D.: Robot learning from demonstration: a task-level planning approach. Intl. J. Advanced Robotic Syst. (2008)

    Google Scholar 

  8. Gaspar, J., Winters, N., Santos-Victor, J.: Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation 16, 890–898 (2000)

    Article  Google Scholar 

  9. Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3d models of indoor and outdoor environments with a mobile robot. Robotics and Autonomous Systems 44(1), 15–27 (2003)

    Article  Google Scholar 

  10. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  11. Lee, D., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  12. Lenser, S., Veloso, M.: Visual sonar: fast obstacle avoidance using monocular vision. In: Proc. of IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 886–891 (2003)

    Google Scholar 

  13. Martin, C.: The Simulated Evolution of Robot Perception. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2001)

    Google Scholar 

  14. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  15. Narayanan, K., Posada, L., Hoffmann, F., Bertram, T.: Imitation learning for visual robotic behaviors. In: Proceedings of 19th Workshop Computational Intelligence, pp. 221–236 (2009)

    Google Scholar 

  16. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Robot. Auton. Syst. 56(11), 915–926 (2008)

    Article  Google Scholar 

  17. Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6d slam—3d mapping outdoor environments: Research articles. J. Field Robot. 24(8-9), 699–722 (2007)

    Article  MATH  Google Scholar 

  18. Peula, J., Urdiales, C., Herrero, I., Sánchez-Tato, I., Sandoval, F.: Pure reactive behavior learning using case based reasoning for a vision based 4-legged robot. Robotics and Autonomous System 57(6-7), 688–699 (2009)

    Article  Google Scholar 

  19. Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. In: Proc. of IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS), pp. 3378–3383 (2008)

    Google Scholar 

  20. Posada, L., Narayanan, K., Hoffmann, F., Bertram, T.: Floor segmentation of omnidirectional images for mobile robot visual navigation. In: Proc. of IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, IROS (2010)

    Google Scholar 

  21. Schaal, S.: Learning from demonstration. In: Advances in Neural Information Processing Systems, vol. 9, pp. 1040–1046. MIT Press, Cambridge (1997)

    Google Scholar 

  22. Schaal, S., Atkeson, C., Vijayakumar, S.: Scalable techniques from nonparametric statistics for real time robot learning. Appl. Intell. 17(1), 49–60 (2002)

    Article  MATH  Google Scholar 

  23. Sofman, B., Lin, E., Bagnell, J., Vandapel, N., Stentz, A.: Improving robot navigation through self-supervised online learning. In: Proceedings of Robotics: Science and Systems, Philadelphia, USA (2006)

    Google Scholar 

  24. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular color vision. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 866–871. AAAI Press / The MIT Press (2000)

    Google Scholar 

  25. Vlachos, M., Kollios, G., Gunopulos, D.: Elastic translation invariant matching of trajectories. Machine Learning 58(2-3), 301–334 (2005)

    Article  MATH  Google Scholar 

  26. Yoo, T., Oh, I.: A fast algorithm for tracking human faces based on chromatic histograms. Pattern Recognition Letters 20(10), 967–978 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narayanan, K.K., Posada, L.F., Hoffmann, F., Bertram, T. (2010). Robot Programming by Demonstration. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2010. Lecture Notes in Computer Science(), vol 6472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17319-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17319-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17318-9

  • Online ISBN: 978-3-642-17319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics