Skip to main content

CGP Acceleration Using Field-Programmable Gate Arrays

  • Chapter
Book cover Cartesian Genetic Programming

Part of the book series: Natural Computing Series ((NCS))

  • 2185 Accesses

Abstract

In Chap. 5 we described an application specific integrated circuit consisting of programmable polymorphic nodes that resembled the CGP representation. A search algorithm, running on an external personal computer, was used to evolve configurations as well as interconnection of the nodes. In this chapter we describe how complete CGP system (i.e., the array of programmable nodes and search algorithm) can be implemented on a single chip. The implementation is carried out using a field-programmable gate array (FPGA) – a reconfigurable chip which provides a high performance and flexibility in computing for a moderate cost. In comparison with CGP running on a personal computer, the main advantages of the FPGA implementation are a significant speed-up that can be obtained for many applications and a possibility to build small low-power adaptive embedded systems. This chapter introduces the complete FPGA implementations of CGP which can typically be used to accelerate combinational circuit evolution (see Chap. 5) and image filter evolution (see Chap. 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glette, K., Torresen, J.: A flexible on-chip evolution system implemented on a Xilinx Virtex-II Pro device. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 3637, pp. 66–75. Springer (2005)

    Google Scholar 

  2. Glette, K., Torresen, J., Yasunaga, M., Yamaguchi, Y.: On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 373–380. IEEE Computer Society (2006)

    Chapter  Google Scholar 

  3. Gwaltney, D., Dutton, K.: A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback. In: Proc. NASA/DoD Conference on Evolvable Hardware, pp. 43–50. IEEE Computer Society (2005)

    Chapter  Google Scholar 

  4. Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation. Morgan Kaufmann (2008)

    MATH  Google Scholar 

  5. Salomon, R., Widiger, H., Tockhorn, A.: Rapid Evolution of Time-Efficient Packet Classifiers. In: IEEE Congress on Evolutionary Computation, pp. 2793–2799. IEEE CIS (2006)

    Google Scholar 

  6. Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 2606, pp. 186–197. Springer (2003)

    Google Scholar 

  7. Sekanina, L.: Evolvable components: From Theory to Hardware Implementations. Natural Computing. Springer (2004)

    Google Scholar 

  8. Sekanina, L., Friedl, S.: An Evolvable Combinational Unit for FPGAs. Computing and Informatics 23(5), 461–486 (2004)

    MATH  Google Scholar 

  9. Sekanina, L., Martinek, T.: Evolving Image Operators Directly in Hardware, pp. 93–112. EURASIP Book Series on Signal Processing and Communications, Volume 8. Hindawi Publishing Corporation (2007)

    Google Scholar 

  10. Upegui, A., Sanchez, E.: Evolving Hardware with Self-Reconfigurable Connectivity in Xilinx FPGAs. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 153–160. IEEE Computer Society (2006)

    Chapter  Google Scholar 

  11. Vasicek, Z., Sekanina, L.: An Area-Efficient Alternative to Adaptive Median Filtering in FPGAs. In: Proc. International Conference on Field Programmable Logic and Applications, pp. 216–221. IEEE Computer Society (2007)

    Chapter  Google Scholar 

  12. Vasicek, Z., Sekanina, L.: An Evolvable Hardware System in Xilinx Virtex II Pro FPGA. International Journal of Innovative Computing and Applications 1(1), 63–73 (2007)

    Article  Google Scholar 

  13. Vasicek, Z., Sekanina, L.: Evaluation of a New Platform For Image Filter Evolution. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 577–584. IEEE Computer Society (2007)

    Google Scholar 

  14. Vasicek, Z., Sekanina, L.: Hardware Accelerators for Cartesian Genetic Programming. In: Proc. European Conference on Genetic programming, LNCS, vol. 4971, pp. 230–241 (2008)

    Google Scholar 

  15. Vasicek, Z., Sekanina, L.: Hardware Accelerator of Cartesian Genetic Programming with Multiple Fitness Units. Computing and Informatics 29(7), 1–12 (2010)

    Google Scholar 

  16. Vasicek, Z., Zadnik, M., Sekanina, L., Tobola, J.: On Evolutionary Synthesis of Linear Transforms in FPGA. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 5216, pp. 141–152. Springer (2008)

    Google Scholar 

  17. Vassilev, V., Job, D., Miller, J.F.: Towards the Automatic Design of More Efficient Digital Circuits. In: Proc. NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE Computer Society (2000)

    Chapter  Google Scholar 

  18. Wang, J., Chen, Q.S., Lee, C.H.: Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware. IET Computers and Digital Techniques 2(5), 386–400 (2008)

    Article  MathSciNet  Google Scholar 

  19. Xilinx: Virtex-II Pro Platform FPGAs: Complete Data Sheet (2005). URL: http://www.xilinx.com/partinfo/ds031.pdf

  20. Zhang, Y., Smith, S.L., Tyrrell, A.M.: Intrinsic Evolvable Hardware in Digital Filter Design. In: Applications of Evolutionary Computing, LNCS, vol. 3005, pp. 389–398. Springer (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Sekanina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sekanina, L., Vasicek, Z. (2011). CGP Acceleration Using Field-Programmable Gate Arrays. In: Miller, J. (eds) Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17310-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17310-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17309-7

  • Online ISBN: 978-3-642-17310-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics