Skip to main content

Beyond Convexity: New Perspectives in Computational Optimization

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

  • 2848 Accesses

Abstract

For computational solutions of convex optimization problems, a rich body of knowledge including theory, algorithms, and computational experience is now available. In contrast, nothing of comparable depth and completeness can be offered at the present time, for non-convex problems. The field of convex optimization benefited immensely from pre-existing body of concepts and knowledge from pure mathematics, while non-convex problems seems to require formulation and exploration of entirely new mathematical concepts, as well as new models of computation. The intent of this paper is to describe our efforts in this direction, at a philosophical or conceptual level, without going into specific applications or implementation in software. We also point out connections with other areas, particularly mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhyankar, S., Brenner, H., Campillo, A., Cutkosky, S., Gaffney, T., Ghezzi, L.: Some Thoughts on the Jacobian Conjecture. In: Conference on Valuation Theory and Integral Closures in Commutative Algebra (2006)

    Google Scholar 

  2. Bayer, D., Lagarias, J.: The Nonlinear Geometry of Linear Programming. Affine and Projective Scaling Trajectories. Trans. Am. Math. Soc. 314(2), 499–526 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Blum, L.: Complexity and real computation. Springer, Heidelberg (1998)

    Book  Google Scholar 

  4. Bochnak, J., Coste, M., Roy, M.: Real algebraic geometry. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  5. Cartan, É.: On manifolds with an affine connection and the theory of general relativity. Humanities Press (1922)

    Google Scholar 

  6. Chern, S.: Complex manifolds without potential theory: With an appendix on the geometry of characteristic classes. Springer, Heidelberg (1979)

    Book  MATH  Google Scholar 

  7. Christoffel, E.: Üeber die Transformation der homogenen Differentialausdrücke zweiten Grades. J. für die reine und angewandte Math. 1869(70), 46–70 (1869)

    Article  MATH  Google Scholar 

  8. Eddington, A.: The mathematical theory of relativity. Cambridge Univ. Press, Cambridge (1963)

    Google Scholar 

  9. Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie de Bruxelles. Georges Thone, Liège, pp. 29–55 (1950)

    Google Scholar 

  10. Eisenhart, L.: Non-Riemannian Geometry. Am. Math. Soc. Colloq. Pub. (1990)

    Google Scholar 

  11. Van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture. Birkhäuser, Basel (2000)

    Book  MATH  Google Scholar 

  12. Finsler, P.: Üeber Kurven und Flächen in allgemeinen Räumen. Ph.D. thesis, Georg August Universitat Gottingen (1918)

    Google Scholar 

  13. Gauss, C.: Disquisitiones circa superficies curvas. Comm. Soc. Gottingen 6 (1828)

    Google Scholar 

  14. Gill, P., Murray, W., Saunders, M., Wright, M.: Some issues in implementing a sequential quadratic programming algorithm. ACM Signum Newsletter 20(2) (1985)

    Google Scholar 

  15. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Reviews of Modern Physics 21(3), 447–450 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartle, J.B., Hawking, S.W.: Wave function of the Universe. Phys. Rev. D 28(12), 2960–2975 (1983)

    Article  MathSciNet  Google Scholar 

  17. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  18. Hopf, H., Rinow, W.: Ueber den Begriff der vollständigen differentialgeometrischen Fläche. Commentarii Mathematici Helvetici 3(1), 209–225 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proc. of the 16th Annual ACM Symposium on Theory of Computing. ACM, New York (1984)

    Google Scholar 

  20. Karmarkar, N.: An Interior Point Approach to NP Complete Problems: Part I. AMS Contemporary Mathematics 114, 297–308 (1988)

    Article  MathSciNet  Google Scholar 

  21. Karmarkar, N.: Riemannian Geometry Underlying Interior Point Methods for LP. AMS Contemporary Mathematics 114, 51–75 (1988)

    Article  MathSciNet  Google Scholar 

  22. Karmarkar, N., Thakur, S.: An interior-point approach to a tensor optimization problem with application to upper bounds in integer quadratic optimization problems. In: Integer Programming and Combinatorial Optimization, pp. 406–419 (1992)

    Google Scholar 

  23. Karmarkar, N.: A novel approach to overcome bandwidth limitations of parallel computers based on CMOS, Part-1: General concepts. In: Electron Devices and Semiconductor Technology, IEDST 2009, pp. 1–7 (2009)

    Google Scholar 

  24. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I. Wiley Interscience, Hoboken (1963)

    MATH  Google Scholar 

  25. Kossowski, M., Kriele, M.: Transverse, Type Changing, Pseudo Riemannian Metrics and the Extendability of Geodesics. Proceedings: Mathematical and Physical Sciences 444(1994), 297–306 (1921)

    MathSciNet  MATH  Google Scholar 

  26. Larsen, J.: Geodesics and Jacobi fields in singular semi-Riemannian geometry. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 446(1928) (1994)

    Google Scholar 

  27. Lasserre, J.: Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimization 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Levi-Civita, T.: The Absolute Differential Calculus, London and Glasgow (1947)

    Google Scholar 

  29. Lobachevsky, N.: On the foundations of geometry. Kazan Messenger 25 (1829)

    Google Scholar 

  30. Lorentz, H., Einstein, A., Minkowski, H., Sommerfeld, A., Weyl, H.: The principle of relativity. Dover, New York (1952)

    MATH  Google Scholar 

  31. Minkowski, H.: Raum und Zeit. Physik. Zeits. 10(104) (1909)

    Google Scholar 

  32. Misner, C., Thorne, K., Wheeler, J.: Gravitation. WH Freeman & Co., New York (1973)

    Google Scholar 

  33. Moré, J., Sorensen, D.: Computing a trust region step. SIAM Journal on Scientific and Statistical Computing 4, 553–572 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mumford, D.: Algebraic geometry I: Complex projective varieties. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  35. Nesterov, Y., Nemirovsky, A.: Self-concordant functions and polynomial-time methods in convex programming. USSR Academy of Sciences, Central Economic & Mathematic Institute, Moscow (1989)

    Google Scholar 

  36. Parrilo, P., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99 (2001)

    Google Scholar 

  37. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rapcsák, T.: Smooth nonlinear optimization in Rn. Kluwer Academic Pub., Boston (1997)

    Google Scholar 

  39. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. Real algebraic geometry and ordered structures: AMS Special Session 253 (2000)

    Google Scholar 

  40. Ricci, M., Levi-Civita, T.: Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen 54(1), 125–201 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  41. Riemann, B.: On the Hypotheses which lie at the Bases of Geometry. Nature 8(183), 14–17 (1873)

    Article  Google Scholar 

  42. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Mathematische Annalen 289(1), 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schrödinger, E.: Space-time structure. Cambridge University Press, Cambridge (1929)

    MATH  Google Scholar 

  44. Shor, N.: Class of global minimum bounds of polynomial functions. Cybernetics and Systems Analysis 23(6), 731–734 (1987)

    MATH  Google Scholar 

  45. Smale, S.: Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pp. 185–196. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  46. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Berkeley, CA 1 (1979)

    Google Scholar 

  47. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semi-algebraic geometry. Mathematische Annalen 207(2), 87–97 (1973)

    Article  MATH  Google Scholar 

  48. Todd, M.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. UdriÅŸte, C.: Convex functions and optimization methods on Riemannian manifolds. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  50. Veblen, O., Thomas, T.: The geometry of paths. Transactions of the American Mathematical Society 25, 551–608 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weierstrass, K.: Definition analytischer funktionen einer Veränderlichen vermittelst algebraischer Differentialgleichungen. Werke I, 75–84 (1842)

    Google Scholar 

  52. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karmarkar, N. (2010). Beyond Convexity: New Perspectives in Computational Optimization. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics