Skip to main content

Face Recognition Using Sparse Representations and Manifold Learning

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

Manifold learning is a novel approach in non-linear dimensionality reduction that has shown great potential in numerous applications and has gained ground compared to linear techniques. In addition, sparse representations have been recently applied on computer vision problems with success, demonstrating promising results with respect to robustness in challenging scenarios. A key concept shared by both approaches is the notion of sparsity. In this paper we investigate how the framework of sparse representations can be applied in various stages of manifold learning. We explore the use of sparse representations in two major components of manifold learning: construction of the weight matrix and classification of test data. In addition, we investigate the benefits that are offered by introducing a weighting scheme on the sparse representations framework via the weighted LASSO algorithm. The underlying manifold learning approach is based on the recently proposed spectral regression framework that offers significant benefits compared to previously proposed manifold learning techniques. We present experimental results on these techniques in three challenging face recognition datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraniuk, R.G., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective. To appear in Proceedings of the IEEE (2010)

    Google Scholar 

  2. Cover, T.M.: Estimation by the nearest neighbor rule. IEEE Trans. on Information Theory 14(1), 50–55 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  4. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2006)

    Article  MATH  Google Scholar 

  6. Qiao, L., Chen, S., Tan, X.: Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognition Letters (2009)

    Google Scholar 

  7. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16, pp. 153–160 (2003)

    Google Scholar 

  8. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: IEEE Int. Conf. on Computer Vision, pp. 1208–1213 (2005)

    Google Scholar 

  9. Qiao, L., Chen, S., Tan, X.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43(1), 331–341 (2010)

    Article  MATH  Google Scholar 

  10. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with L1-Graph for Image Analysis. IEEE Transactions on Image Processing (2010) (accepted for publication)

    Google Scholar 

  11. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  12. Belhumeur, P., Hespanda, J., Kriegman, D.: Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  13. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM 51(1), 117–122 (2008)

    Article  Google Scholar 

  14. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 328–340 (2005)

    Google Scholar 

  15. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho, D.: Compressed sensing. IEEE Trans. on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: Advances in Neural Information Processing Systems, vol. 21 (2009)

    Google Scholar 

  18. Elgammal, A., Lee, C.S.: Inferring 3D body pose from silhouettes using activity manifold learning. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2 (2004)

    Google Scholar 

  19. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1713–1727 (2008)

    Google Scholar 

  20. Rabaud, V., Belongie, S.: Linear Embeddings in Non-Rigid Structure from Motion. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  21. AT&T face database, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  22. Yale Univ. Face Database, http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  23. Cai, D., He, X., Han, J.: Spectral regression for efficient regularized subspace learning. In: Proc. Int. Conf. Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  24. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  25. Zou, H.: The adaptive Lasso and its oracle properties. Journal of the American Statistical Association 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsagkatakis, G., Savakis, A. (2010). Face Recognition Using Sparse Representations and Manifold Learning. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics