Skip to main content

Bivariate Feature Localization for SIFT Assuming a Gaussian Feature Shape

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

In this paper, the well-known SIFT detector is extended with a bivariate feature localization. This is done by using function models that assume a Gaussian feature shape for the detected features. As function models we propose (a) a bivariate Gaussian and (b) a Difference of Gaussians. The proposed detector has all properties of SIFT, but provides invariance to affine transformations and blurring. It shows superior performance for strong viewpoint changes compared to the original SIFT. Compared to the most accurate affine invariant detectors, it provides competitive results for the standard test scenarios while performing superior in case of motion blur in video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollefeys, M., Gool, L.V.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. International Journal of Computer Vision (IJCV) 59, 207–232 (2004)

    Article  Google Scholar 

  2. Brown, M., Lowe, D.G.: Invariant features from interest point groups. In: British Machine Vision Conference (BMVC), pp. 656–665 (2002)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 8, 679–698 (1986)

    Article  Google Scholar 

  4. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  5. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision (IJCV) 30, 79–116 (1998)

    Article  Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)

    Article  Google Scholar 

  7. Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-d shape cues from affine deformations of local 2-d brightness structure. Image and Vision Computing 15, 415–434 (1997)

    Article  Google Scholar 

  8. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision (IJCV) 60, 63–86 (2004)

    Article  Google Scholar 

  10. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27, 1615–1630 (2005)

    Article  Google Scholar 

  11. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision (IJCV) 65, 43–72 (2005)

    Article  Google Scholar 

  12. Yu, G., Morel, J.M.: A fully affine invariant image comparison method. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Washington, DC, USA, pp. 1597–1600. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  13. Köser, K., Koch, R.: Perspectively invariant normal features. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)

    Google Scholar 

  14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference (BMVC), vol. 1, pp. 384–393 (2002)

    Google Scholar 

  15. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. In: Foundations and Trends in Computer Graphics and Vision, vol. 3 (2008)

    Google Scholar 

  16. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: International Conference on Computer Vision and Pattern Recognition (ICCV), pp. 506–513 (2004)

    Google Scholar 

  17. Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: IEEE International Conference on Computer Vision and Pattern Recognition (ICCV), pp. 230–235 (1998)

    Google Scholar 

  18. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision (IJCV) 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  19. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple object class detection with a generative model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 26–36 (2006)

    Google Scholar 

  20. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 370–377 (2005)

    Google Scholar 

  21. Vatis, Y., Ostermann, J.: Adaptive interpolation filter for h.264/avc. IEEE Transactions on Circuits and Systems for Video Technology 19, 179–192 (2009)

    Article  Google Scholar 

  22. Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Half-sift: High-accurate localized features for sift. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop, Miami Beach, USA, pp. 31–38 (2009)

    Google Scholar 

  23. Fischler, R.M.A., Bolles, C.: Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  24. Thormählen, T., Hasler, H., Wand, M., Seidel, H.P.: Merging of feature tracks for camera motion estimation from video. In: 5th European Conference on Visual Media Production (CVMP), pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J. (2010). Bivariate Feature Localization for SIFT Assuming a Gaussian Feature Shape. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics