Skip to main content

γ-ray binaries as non-accreting pulsar systems

  • Conference paper
  • First Online:
High-Energy Emission from Pulsars and their Systems

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

The γ-ray binaries LS 5039 and LS I +61◦303 have been detected by Cerenkov telescopes at TeV energies, exhibiting periodic behavior correlated with the orbital period. These γ-ray binary systems have also been recently detected by the Fermi Gamma-ray Telescope at GeV energies, and combination of GeV and TeV observations are providing both, expected and surprising results. We summarize these results, also considering the multi-frequency scenario, from the perspective of pulsar systems. We discuss similarities and differences of models in which pulsar wind/star wind shocks, or pulsar wind zone processes lead to particles accelerated enough to emit TeV photons. We discuss in detail the caveats of the current observations for detecting either accretion lines or pulsations from these objects.We also comment on the possibility for understanding the GeV to TeV emission from these binaries with a 2-components contribution to their spectrum. We show that it would be possible to accommodate both, normal pulsar emission and GeV / TeV fluxes that vary with orbital phase.We point out several aspects of this idea that are subject to test with data being currently taken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdo A. et al. 2009, ApJ Letters 701, 123

    Article  ADS  Google Scholar 

  2. Abdo A. et al. 2009b, ApJ Letters 706, 56

    Article  ADS  Google Scholar 

  3. Abdo A. et al. 2009c, Science 326, 1512

    Article  ADS  Google Scholar 

  4. Abdo A. et al. 2010, ApJS 187, 460

    Article  ADS  Google Scholar 

  5. Aharonian F., et al. 2005a, A&A 442, 1

    Article  ADS  Google Scholar 

  6. Aharonian F., et al. 2005b, Science 309, 746

    Article  ADS  Google Scholar 

  7. Aharonian F., et al. 2006, A&A 460, 743

    Article  ADS  Google Scholar 

  8. Aharonian F., et al. 2007, A&A, 469, L1

    Article  ADS  Google Scholar 

  9. Aharonian F., Anchordoqui L. A., Khangulyan D., & Montaruli T. 2006b, Journal of Physics: Conference Series 39, 408

    Article  ADS  Google Scholar 

  10. Acciari V. A. et al. 2008, ApJ 679, 1427

    Article  ADS  Google Scholar 

  11. Acciari V. A. et al. 2009, ApJ 700, 1034

    Article  ADS  Google Scholar 

  12. Albert J. et al. 2006, Science 312, 1771

    Article  ADS  Google Scholar 

  13. Albert J. et al. 2007, ApJ Letters 665, 51

    Article  ADS  Google Scholar 

  14. Albert J. et al. 2008, ApJ 684, 1351

    Article  ADS  Google Scholar 

  15. Albert J. et al. 2009, ApJ 693, 303

    Article  ADS  Google Scholar 

  16. Aleksíc J. et al. 2010, ApJ in press; arXiv: 1005.0740

    Google Scholar 

  17. Aragona C. et al. 2009, ApJ 698, 514

    Article  ADS  Google Scholar 

  18. Arons J., & Tavani M. 1993, ApJ, 403, 249

    Article  ADS  Google Scholar 

  19. Arons J., & Tavani M. 1994, ApJS, 90, 797

    Article  ADS  Google Scholar 

  20. Atwood W. B., Ziegler M, Johnson R. P. and Baughman B. M. 2006, ApJ Letters 652, 49

    Google Scholar 

  21. Ball L., & Kirk J. G. 2000, Astroparticle Physics, 12, 335

    Article  ADS  Google Scholar 

  22. Bednarek W. 1997, A&A 322, 523

    ADS  Google Scholar 

  23. Bednarek W. 2006, MNRAS 368, 579

    Article  ADS  Google Scholar 

  24. Bednarek W. 2007, A&A 464, 259

    Article  ADS  Google Scholar 

  25. Belczynski K. & Ziolkowski J. 2009, arXiv:0907.4990

    Google Scholar 

  26. Bignami G. F., Maraschi L., & Treves A. 1977, A&A 55, L155

    Google Scholar 

  27. Bogovalov S. V. & Aharonian F. 2000, MNRAS 313, 504

    Article  ADS  Google Scholar 

  28. Bogovalov S. V. et al. 2008, MNRAS 387, 63

    Article  ADS  Google Scholar 

  29. Bosch-Ramon V., Paredes, J. M., Rib´o, M., et al. 2005, ApJ, 628, 388

    Google Scholar 

  30. Boettcher M. & Dermer C. D. 2005, ApJ 634, 81

    Article  ADS  Google Scholar 

  31. Casares J., et al. 2005a, MNRAS, 364, 899

    Article  ADS  Google Scholar 

  32. Casares J., et al. 2005b, MNRAS, 360, 1105

    Article  ADS  Google Scholar 

  33. Cassinelli, J. P. 1979, ARA&A 17, 275

    Article  ADS  Google Scholar 

  34. Chernyakova, M. et al. 2006, MNRAS, 372, 1585

    Article  ADS  Google Scholar 

  35. Dhawan V., Mioduszewski, A., Rupen, M. 2006, VI Microquasar Workshop, PoS 52.1

    Google Scholar 

  36. Dubus G. 2006a, A&A, 456, 801

    Article  ADS  Google Scholar 

  37. Dubus G. 2006b, A&A 456, 80

    Article  ADS  Google Scholar 

  38. Dubus G., Cerutti B., & Henri G. 2008, A&A 477, 691

    Article  ADS  Google Scholar 

  39. Gregory P. C. 2002, ApJ 575, 427

    Article  ADS  Google Scholar 

  40. Gregory P. C. et al. 1979, AJ 84, 1030

    Article  ADS  Google Scholar 

  41. Gregory P. C., & Neish C. 2002, ApJ, 580, 1133

    Article  ADS  Google Scholar 

  42. Grundstrom E. D. et al. 2007, ApJ 656, 437

    Article  ADS  Google Scholar 

  43. Harrison F. A., et al. 2000, ApJ 528, 454

    Article  ADS  Google Scholar 

  44. Hickox R. C., Narayan R., Kallman T. R, 2004, ApJ 614, 881

    Article  ADS  Google Scholar 

  45. Hinton J. A., et al. 2009, ApJ Letters 690, 101

    Article  ADS  Google Scholar 

  46. Hoffmann, A. D., Klochkov, D., Santangelo, A., Horns, D., Segreto, A., Staubert, R., & P¨uhlhofer, G., 2009, A&A 494, L37

    Google Scholar 

  47. Israel G.L. & Stella L. 1996, ApJ 468, 369

    Article  ADS  Google Scholar 

  48. Jaroschek C. H., et al. 2008, Advances in Space Research 41, 481

    Article  ADS  Google Scholar 

  49. Johnston S., et al. 1992, ApJ, 387, L37

    Article  ADS  Google Scholar 

  50. Johnston S. Manchester, R.N., McConnell D., Campbell-Wilson D., 1999, MNRAS 302, 277

    Article  ADS  Google Scholar 

  51. Johnston S., Ball L., Wang N., Manchester R. N., 2005 MNRAS, 358, 1069

    Article  ADS  Google Scholar 

  52. Kirk J. G., Ball, L., & Skjaeraasen O. 1999, Astroparticle Physics, 10, 31

    Article  ADS  Google Scholar 

  53. Leahy D. A., Harrison F. A., & Yoshida A. 1997, ApJ, 475, 823

    Article  ADS  Google Scholar 

  54. McSwain M. V., et al. 2004, ApJ, 600, 927

    Article  ADS  Google Scholar 

  55. Maraschi L. & Treves A. 1981, MNRAS, 194, 1

    ADS  Google Scholar 

  56. Martocchia A., Motch C., Negueruela I. 2005, A&A 430, 245

    Article  ADS  Google Scholar 

  57. Massi M., Ribó M., Paredes J. M., Peracaula, M & Estalella, M. 2001, A&A 376, 217

    Google Scholar 

  58. Massi M., et al. 2004, A&A 414, L1

    Article  ADS  Google Scholar 

  59. Martí J. et al. 1998, A&A 239, 951

    ADS  Google Scholar 

  60. Martí J. et al. 2004, A&A 418, 271

    Article  ADS  Google Scholar 

  61. Melatos A. 1998 Memorie della Societa Astronomia Italiana 69, 1009

    ADS  Google Scholar 

  62. Neronov A., & Ribordy M. 2009, Phys. Rev. D79, 043013

    ADS  Google Scholar 

  63. Paredes J. M., Martí J., Ribó M., & Massi, M. 2000, Science, 288, 2340

    Article  ADS  Google Scholar 

  64. Paredes J. M., Rib´o M., Ros E., Martí J., & Massi M. 2002, A&A, 393, L99

    Google Scholar 

  65. Paredes J. M., et al. 2007, ApJ 664, L39

    Article  ADS  Google Scholar 

  66. Protheroe R. J. & Stanev T. 1987, ApJ 322, 838

    Article  ADS  Google Scholar 

  67. Rea N., Torres D. F., van der KlisM., Jonker P.,Mendez M., & Sierpowska-Bartosik A. 2010, MNRAS 405, 2206

    Google Scholar 

  68. Reig P., et al. 2000, MNRAS 317, 205

    Article  ADS  Google Scholar 

  69. Rib´o M., Reig, P., Martí, J., & Paredes, J. M. 1999, A&A, 347, 518

    Google Scholar 

  70. Rib´o M., Paredes, J. M., Romero, G. E., et al. 2002, A&A, 384, 954

    Google Scholar 

  71. Rib´o M., Paredes, J. M., Moldón J., & Martí, J. 2008, A&A Letters, arXiv: 0801.2940

    Google Scholar 

  72. Romero G. E., Okazaki A. T., Orellana M., Owocki S. P., 2007, A&A 474, 15

    Article  ADS  Google Scholar 

  73. Sidoli L. et al. 2006, A&A 459, 901

    Article  ADS  Google Scholar 

  74. Sierpowska A. & Bednarek W. 2005, MNRAS 356, 711

    Article  ADS  Google Scholar 

  75. Sierpowska-Bartosik A. & Torres D. F. 2007, ApJ Letters 671, 145

    Article  ADS  Google Scholar 

  76. Sierpowska-Bartosik A. & Torres D. F. 2008a, ApJ Letters 674, 89

    Article  ADS  Google Scholar 

  77. Sierpowska-Bartosik A. & Torres D. F. 2008b, Astroparticle Physics 30, 239

    Article  ADS  Google Scholar 

  78. Sierpowska-Bartosik A. & Torres D. F. 2009, ApJ 693, 1462

    Article  ADS  Google Scholar 

  79. Tavani M., & Arons, J. 1997, ApJ, 477, 439

    Article  ADS  Google Scholar 

  80. Takahashi T., et al. 2009, ApJ, 697, 535

    Article  Google Scholar 

  81. Tauris T.M., van den Heuvel E. P. J., 2006, in LewinW. H. G., van der Klis,M., eds., Compact stellar X-ray sources, Cambridge University Press, Cambridge, p. 623

    Google Scholar 

  82. Torres D. F. & Halzen F. 2007, Astroparticle Physics 27, 500

    Article  ADS  Google Scholar 

  83. Torres D. F., et al., 2010, ApJ Letters 719, 104

    Article  ADS  Google Scholar 

  84. Vaughan B. A., et al. 1994, ApJ 435, 362

    Article  ADS  Google Scholar 

  85. Waters L. B. F. M. 1986, A&A 162, 121

    ADS  Google Scholar 

  86. Zdziarski A. A., Neronov A., & Chernyakova M. 2008, arXiv:0802.1174

    Google Scholar 

  87. Zhang S., Torres D. F., Li J., Chen Y. Rea N, & Wang J., MNRAS in press, arXiv 1006.1427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres, D.F. (2011). γ-ray binaries as non-accreting pulsar systems. In: Torres, D., Rea, N. (eds) High-Energy Emission from Pulsars and their Systems. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17251-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17251-9_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17250-2

  • Online ISBN: 978-3-642-17251-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics