Skip to main content

Cherenkov Telescope results on gamma-ray binaries

  • Conference paper
  • First Online:
High-Energy Emission from Pulsars and their Systems

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 1153 Accesses

Abstract

In the past ten years of regular operations, a new generation of Cherenkov telescopes have established binary systems as a new class of Very High Energy γ- ray (VHE) emitters. Particle acceleration in these systems may occur either in an accretion-powered jet (“microquasar”) or in the shock between a pulsar wind and a stellar wind (“wind-wind”). This paper describes the phenomenology of the three VHE binaries PSR B1259-63, LS 5039 and LS I+61?303. Two other objects may belong to this new class: HESS J0632+057 is a point-like variable VHE source whose multiwavelength behaviour resembles that of the other binaries, whereas Cyg X-1 is a well-known accreting system which may have been detected in VHE during a flaring episode. The paper concludes with a review of the latest searches for other binaries with Cherenkov telescopes, with special emphasis on Cyg X-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinton, J. A. and Hofmann W.: Teraelectronvolt Astronomy. Annu. Rev. Astron. Astrophys. 47, 523565 (2009).

    Article  ADS  Google Scholar 

  2. Dubois, R. for the Fermi/LAT Collaboration: Fermi results on gamma-ray binaries. These proceedings.

    Google Scholar 

  3. Stella L.: Observational aspects of X-ray binaries. These proceedings.

    Google Scholar 

  4. Torres, D. F.: Gamma-ray binaries as pulsar systems. These proceedings.

    Google Scholar 

  5. Cerutti, : Relativistic motion and beamed radiation in gamma-ray binaries. These proceedings.

    Google Scholar 

  6. Moldón, J.: Astrometric and morphological variability and the birth place of LS 5039. These proceedings.

    Google Scholar 

  7. Zabalza, V.: Leptonic one zone model for LS I +61 303. These proceedings.

    Google Scholar 

  8. Casares J.: New results on VHE gamma-ray binaries. These proceedings.

    Google Scholar 

  9. Aharonian, F. A. et al. (the HESS coll.): Discovery of the Binary Pulsar PSRB125963 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S. A&A 442, 1 (2005).

    Google Scholar 

  10. Tavani, M. and Arons, J.: Theory of High-Energy Emission from the Pulsar/Be Star System PSR 125963. I. Radiation Mechanisms and Interaction Geometry Ap. J. 477, 439 (1997).

    Google Scholar 

  11. Kirk, J. G., Ball, L., Skjaeraasen, O.: Inverse Compton emission of TeV gamma rays from PSR B1259-63. Astrop. Phys., 10/1, 31-45 (1999).

    Google Scholar 

  12. Kawachi, A., Naito, T., Patterson, J. R., et al.: A Search for TeV Gamma-Ray Emission from the PSR B125963/SS 2883 Binary System with the CANGAROO-II 10 Meter Telescope. Ap. J. 607, 949 (2004).

    Article  ADS  Google Scholar 

  13. Chernyakova, M., Neronov, A., Lutovinov, A., Rodriguez, J., Johnston, S.: XMM-Newton observations of PSR B1259-63 near the 2004 periastron passage. MNRAS 367, 1201 (2006).

    Article  ADS  Google Scholar 

  14. Aharonian, F. A. et al. (the HESS coll.): Very high energy γ-ray observations of the binary PSR B125963/SS2883 around the 2007 Periastron. A&A 507, 389396 (2009).

    Google Scholar 

  15. Aragona, C. et al.: The Orbits of the γ-ray Binaries LS I +61 303 and LS 5039. Ap. J. 698, 514 (2009).

    Google Scholar 

  16. Aharonian, F. A. et al. (the HESS coll.): Discovery of Very High Energy Gamma Rays Associated with an X-ray Binary. Science 309, 746 (2005).

    Google Scholar 

  17. Ribó M., Paredes J. M., Moldón J., Martí J., Massi M.: The changing milliarcsecond radio morphology of the gamma-ray binary LS 5039 . A&A 481, 1720 (2008).

    Article  ADS  Google Scholar 

  18. Paredes, J. M., Martí J., Ribó M., Massi M.: Discovery of a High-Energy Gamma-Ray- Emitting Persistent Microquasar. Science 288, 2340 (2000).

    Google Scholar 

  19. Aharonian, F. A. et al. (the HESS coll.): 3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039. A&A 460, 743 (2006).

    Google Scholar 

  20. Casares J., Ribó M., Ribas I., Paredes J.M., et al.: A possible black hole in the gamma-ray microquasar LS 5039. MNRAS 364, 899 (2006).

    Google Scholar 

  21. Dhawan, V., Mioduszewski, A., & Rupen, M.: in VI Microquasar Workshop: Microquasars and Beyond, ed. by T. Belloni, (Trieste: PoS), p. 52

    Google Scholar 

  22. Albert, J. et al. (the MAGIC coll.): Variable Very-High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303. Science, 312/5781, 17711773 (2006).

    Google Scholar 

  23. Acciari, V. A. et al. (the VERITAS coll.): VERITAS Observations of the γ-Ray Binary LS I +61 303. Ap. J. 679, 1427 (2008).

    Google Scholar 

  24. Albert, J. et al. (the MAGIC coll.): Periodic Very High Energy Gamma-Ray Emission from LS I +61 303 Observed with the MAGIC Telescope. Ap. J. 693, 303 (2008).

    Google Scholar 

  25. Albert, J. et al. (the MAGIC coll.): Multiwavelength (Radio, X-Ray, and -Ray) Observations of the -Ray Binary LS I +61 303. Ap. J. 684, 1351 (2008).

    Google Scholar 

  26. Acciari, V. A. et al. (the VERITAS coll.): Multiwavelength Observations of LS I +61 303 with Veritas, Swift, and RXTE. Ap. J. 700, 1034 (2009).

    Google Scholar 

  27. Albert, J. et al. (the MAGIC coll.): Correlated X-Ray and Very High Energy Emission in the Gamma-Ray Binary LS I +61 303 Ap. J. 706, 2730 (2009).

    Google Scholar 

  28. Holder, J. for the VERITAS coll.: VERITAS observations of LS I +61 303 in the Fermi Era, in 31st International Cosmic Ray Conference (Lodz, 2009).

    Google Scholar 

  29. Gregory, P. C.: Bayesian Analysis of Radio Observations of the Be X-Ray Binary LS I +61 303. Ap. J. 525, 427 (2002).

    Google Scholar 

  30. R.K. Zamanov, R. K. et al.: Evidence of Hα periodicities in LS I+61303. A&A 351 543550 (1999).

    Google Scholar 

  31. Aliú, E. for the VERITAS coll.: Latest results on pulsar environments by VERITAS. These proceedings.

    Google Scholar 

  32. ZioÅkowski, J.: Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system. MNRAS 358, 851 (2005).

    Google Scholar 

  33. Romero, G. E., Kaufman Bernado, M. M., Mirabel, I. F.: Recurrent microblazar activity in Cygnus X-1? A&A 393 L6164 (2002).

    Article  ADS  Google Scholar 

  34. Gallo, E., Fender, R. P., Kaiser, C., Russell, D.,Morganti, R., Oosterloo, R., Heinz, S.: A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436 819 (2005).

    Article  ADS  Google Scholar 

  35. McConnell, M. L., et al.: The Soft Gamma-Ray Spectral Variability of Cygnus X-1. Ap. J. 572 984 (2002).

    Google Scholar 

  36. Cadolle Bel, M., et al.: The broad-band spectrum of Cygnus X-1 measured by INTEGRAL. A&A 446 591 (2006).

    Google Scholar 

  37. Gierliński, M., Zdziarski, A. A.: Discovery of powerful millisecond flares from Cygnus X-1. MNRAS 343, L8487 (2003)

    Article  ADS  Google Scholar 

  38. Golenetskii, S., Aptekar, R., Frederiks, D.,Mazets, E., Palshin, V., Hurley, K., Cline, T., Stern, B.: Observations of Giant Outbursts from Cygnus X-1. Ap. J. 596 1113 (2003).

    Google Scholar 

  39. Albert, J. et al. (the MAGIC coll.): Very High Energy Gamma-ray Radiation from the Stellarmass Black Hole Cygnus X-1. Ap. J. 665, L5154 (2007).

    Google Scholar 

  40. Aharonian, F. A. et al. (the HESS coll.): A new population of very high energy gamma-ray sources in the Milky Way. Science 307, 1938 (2005).

    Google Scholar 

  41. Aharonian, F. A. et al. (the HESS coll.): Discovery of a point-like very-high-energy γ-ray source in Monoceros. A&A 469, L14 (2007).

    Google Scholar 

  42. Abdo A. A. et al. (the Fermi/LAT coll.): Fermi Large Area Telescope First Source Catalog. Ap. J. Supp. S. 188, 405 (2010).

    Google Scholar 

  43. Hinton, J. A. et al.: HESS J0632+057: A new gamma-ray binary? Ap. J. Lett. 690, L101104 (2009).

    Article  ADS  Google Scholar 

  44. Acciari, V. A. et al. (the VERITAS coll.): Evidence for long-term gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057. Ap. J. 698, L94L97 (2009).

    Google Scholar 

  45. Skilton, J. L. et al.: The radio counterpart of the likely TeV binary HESS J0632+057 MNRAS 399, 317322 (2009).

    Google Scholar 

  46. Falcone, A.D. et al.: Probing the Nature of the TeV Gamma-Ray Source HESS J0632+057 with Swift. Ap. J. Lett. 708, 52 (2010).

    Article  ADS  Google Scholar 

  47. Fabrika, S. et al.: Properties of SS 433 and ultraluminous X-ray sources in external galaxies. Astrophysics and Space Physics Reviews, 12, 1 (2004).

    Google Scholar 

  48. Cherepashchuk, A. M., et al.: INTEGRAL observations of SS433: Results of a coordinated campaign. A&A 437, 561 (2005).

    Google Scholar 

  49. Catanese, M., Weekes, T. C.: Very High Energy Gamma-Ray Astronomy. PASP 111/764, 11931222. (1999)

    Google Scholar 

  50. F. A. Aharonian et al. (the HEGRA coll.): TeV gamma-ray observations of SS-433 and a survey of the surrounding field with the HEGRA IACT-System. A&A 439, 635 (2005).

    Google Scholar 

  51. Hayashi S. et al. (the CANGAROO coll.): Search for VHE gamma rays from SS433/W50 with the CANGAROO-II telescope. Astrop. Phys. 32, 112119 (2009).

    Google Scholar 

  52. Harlaftis, E. T., Greiner, J.: The rotational broadening and the mass of the donor star of GRS 1915+105. A&A 414, L1316 (2004).

    Article  ADS  Google Scholar 

  53. Mirabel, I. F., Rodriguez, L. F.: A superluminal source in the Galaxy. Nature 371, 46 (1994).

    Google Scholar 

  54. Aharonian, F. A. et al. (the HEGRA coll.): A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg. A&A 395, 803 (2002).

    Google Scholar 

  55. Saito, T. Y., Zanin, R., Bordas, P., for the MAGIC coll.: Microquasar observations with the MAGIC telescope. Proc. 31st ICRC, Lodz, Poland, July 2009, and arXiv:0907.1017.

    Google Scholar 

  56. F. Acero et al. (the HESS coll.): HESS upper limits on very high energy gamma-ray emission from the microquasar GRS 1915+105. A&A 508, 11351140 (2009).

    Google Scholar 

  57. Aliú E. et al (the MAGIC coll.): First Bounds on the High-Energy Emission from Isolated Wolf-Rayet Binary Systems. Ap. J. Lett. 685, L7174 (2008).

    Google Scholar 

  58. Nicholas, B., Rowell, G. for the HESS coll.: H.E.S.S Observations of theMicroquasars Cir X- 1, Cyg X-1 and 4U 1755-33 Proc. of the 4th International Meeting on High Energy Gamma- Ray Astronomy. AIP Conference Proceedings, 1085 245248 (2008).

    Google Scholar 

  59. Chadwick P. M. for the HESS coll.: Simultaneous X-ray and VHE gamma-ray observations of microquasars. Proc. 29 Int. Cosmic Ray Conference, Pune, India, 4 263266 (2005).

    Google Scholar 

  60. Guenette R. for the VERITAS coll.: VERITAS Observations of X-ray Binaries

    Google Scholar 

  61. Ling, Z., Zhang, S. N., Tang, S.: Determining the Distance of Cyg X-3 with its X-Ray Dust Scattering Halo. Ap. J. 695, 1111 (2009).

    Google Scholar 

  62. Stark M. J., Saia M.: Doppler Modulation of X-Ray Lines in Cygnus X-3. Ap. J. Lett. 587, L101 (2003).

    Google Scholar 

  63. Hanson, M. M., Still, M. D., Fender, R. P.: Orbital Dynamics of Cygnus X-3. Ap. J. 541, 308311 (2000).

    Article  ADS  Google Scholar 

  64. Zdziarski A. A., Gierlinski M.: Radiative Processes, Spectral States and Variability of Black- Hole Binaries. Progr. Theor. Phys. Suppl. 155, 99 (2004).

    Google Scholar 

  65. Hjalmarsdotter L., et al.: INTEGRAL Observations of Cygnus X-3. Proc. of the 5th INTEGRAL Workshop The INTEGRAL Universe, Munich, 552, 223 (2004), and astroph/ 0404491.

    Google Scholar 

  66. Hjalmarsdotter L., et al.: Spectral variability in CygnusX-3. MNRAS 384, 278 (2008).

    Google Scholar 

  67. Braes, L., Miley, G.: Radio Detection of Cygnus X-3. Nature 237, 506 (1972).

    Google Scholar 

  68. Geldzahler, B. J., Johnston, K. J., Spencer, J. H., et al.: The 1982 September radio outburst of Cygnus X-3 - Evidence for jet-like emission expanding at not less than about 0.35c. Ap. J.

    Google Scholar 

  69. Lett. 273, L6569 (1983).

    Google Scholar 

  70. Miller-Jones, J. C. A., et al.: Time-sequenced Multi-Radio Frequency Observations of Cygnus X-3 in Flare. Ap. J. 600, 368 (2004).

    Google Scholar 

  71. Chardin G., Gerbier G.: Cygnus X-3 at high energies - A critical analysis of observational results. A&A 210, 52 (1989).

    Google Scholar 

  72. Shilling, M., et al.: Recent HEGRA observations of Cygnus X-3. Proc. 27th International Cosmic Ray Conference, Hamburg, 25212524 (2001).

    Google Scholar 

  73. Albert, J., et al. (the MAGIC coll.): MAGIC Observations of the Unidentified Gamma-Ray Source TeV J2032+4130. Ap. J. Lett. 675, L2528 (2008).

    Google Scholar 

  74. Levinson, A., Blandford, R.: On the Jets Associated with Galactic Superluminal Sources. Ap. J. Lett. 456, L2933 (1996).

    Article  ADS  Google Scholar 

  75. Romero, G. E., Torres, D. F., Kaufman Bernardo, M. M., Mirabel, I. F.: Hadronic gamma-ray emission from windy microquasars. A&A 410, L1 (2003).

    Google Scholar 

  76. Bosch-Ramon, V., Romero, G. E., Paredes, M. J.: A broadband leptonic model for gamma-ray emitting microquasars. A&A 447, 263 (2006).

    Google Scholar 

  77. Atoyan A. M., Aharonian F. A.: Modelling of the non-thermal flares in the Galactic microquasar GRS 1915+105. MNRAS 302, 253 (1999).

    Google Scholar 

  78. Tavani, M., et al.: Extreme particle acceleration in the microquasar CygnusX-3. Nature 462, 620 (2009).

    Google Scholar 

  79. Abdo, A. A., et al.: Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3. Science 326, 1512 (2009).

    Google Scholar 

  80. Aleksic, J. et al. (the MAGIC coll.): MAGIC constraints on Gamma-ray emission from Cygnus X-3. Submitted to Ap. J. and arXiv:1005.0740.

    Google Scholar 

  81. Martí, J., Perez-Ramírez, D., et al.: Possible hot spots excited by the relativistic jets of Cygnus X-3. A&A 439, 279 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Cortina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortina, J. (2011). Cherenkov Telescope results on gamma-ray binaries. In: Torres, D., Rea, N. (eds) High-Energy Emission from Pulsars and their Systems. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17251-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17251-9_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17250-2

  • Online ISBN: 978-3-642-17251-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics