Skip to main content

Pulsars as gravitational wave detectors

  • Conference paper
  • First Online:
High-Energy Emission from Pulsars and their Systems

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

Pulsar timing array projects are carrying out high precision observations of millisecond pulsars with the aim of detecting ultra-low frequency (~ 10-9 to 10-8 Hz) gravitational waves.We show how unambiguous detections of such waves can be obtained by identifying a signal that is correlated between the timing of different pulsars. Here we describe the ongoing observing projects, the expected sources of gravitational waves, the processing of the data and the implications of current results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaro-Seoane, P., et al.: Triplets of supermassive black holes: astrophysics, gravitational waves and detection. MNRAS 402, 2308–2320 (2010).

    Article  ADS  Google Scholar 

  2. Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R., Siemens, X.: Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 79(8), 084, 030 (2009).

    Google Scholar 

  3. Battye, R., Moss, A.: Updated constraints on the cosmic string tension. ArXiv e-prints 1005.0479 (2010)

    Google Scholar 

  4. Booth, R.S., de Blok, W.J.G., Jonas, J.L., Fanaroff, B.: MeerKAT Key Project Science, Specifications, and Proposals. ArXiv e-prints 0910.2935 (2009)

    Google Scholar 

  5. Boyle, L.A., Buonanno, A.: Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe. ArXiv e-prints 708 (2007)

    Google Scholar 

  6. Cognard, I., Backer, D.C.: A microglitch in the millisecond pulsar psr b1821-24 in m28. ApJ 612, L125–L127 (2004)

    Article  ADS  Google Scholar 

  7. Cordes, J.M., et al.: Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries. ApJ 637, 446–455 (2006).

    Google Scholar 

  8. Damour, T., Vilenkin, A.: Gravitational wave bursts from cusps and kinks on cosmic strings. Phys. Rev. D 64(6), 064,008 (2001)

    Google Scholar 

  9. Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. ApJ 234, 1100 (1979)

    Article  ADS  Google Scholar 

  10. Edwards, R.T., Hobbs, G.B., Manchester, R.N.: TEMPO2, a new pulsar timing package - II. The timing model and precision estimates. MNRAS 372, 1549–1574 (2006).

    Google Scholar 

  11. Enoki, M., Inoue, K.T., Nagashima, M., Sugiyama, N.: Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model. ApJ 615, 19–28 (2004)

    Article  ADS  Google Scholar 

  12. Enoki, M., Nagashima, M.: The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Supermassive Black Hole Binaries. Progress of Theoretical Physics 117, 241–256 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ferdman, R.D., et al.: The european pulsar timing array: current efforts and a leap toward the future. Classical and Quantum Gravity 27(8), 084,014 (2010).

    Google Scholar 

  14. Foster, R.S., Backer, D.C.: Constructing a pulsar timing array. ApJ 361, 300 (1990)

    Google Scholar 

  15. Grishchuk, L.P.: Relic gravitational waves and cosmology. Phys. Uspekhi pp. 1235–1247 (2005)

    Google Scholar 

  16. Gwinn, C.R., Eubanks, T.M., Pyne, T., Birkinshaw, M., Matsakis, D.N.: Quasar Proper Motions and Low-Frequency Gravitational Waves. ApJ 485, 87 (1997).

    Article  ADS  Google Scholar 

  17. Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. ApJ 265, L39 (1983)

    Article  ADS  Google Scholar 

  18. Hobbs, G., et al.: The international pulsar timing array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity 27(8), 084,013 (2010).

    Google Scholar 

  19. Hobbs, G., Lyne, A.G., Kramer, M.: An analysis of the timing irregularities for 366 pulsars. MNRAS 402, 1027–1048 (2010).

    Article  ADS  Google Scholar 

  20. Hobbs, G., et al.: The PULSE@Parkes Project: a New Observing Technique for Long-Term Pulsar Monitoring. PASA 26, 468–475 (2009).

    ADS  Google Scholar 

  21. Hobbs, G., et al: TEMPO2: a new pulsar timing package - III. Gravitational wave simulation. MNRAS 394, 1945–1955 (2009).

    Google Scholar 

  22. Hobbs, G.B., et al.: Gravitational-Wave Detection Using Pulsars: Status of the Parkes Pulsar Timing Array Project. PASA 26, 103–109 (2009).

    ADS  Google Scholar 

  23. Hobbs, G.B., Edwards, R.T., Manchester, R.N.: Tempo2, a new pulsar-timing package - i. an overview. MNRAS 369, 655–672 (2006).

    Google Scholar 

  24. Hollow, R., et al.: PULSE@Parkes: Pulsar Observing for High School Students. In: M. G. Gibbs, J. Barnes, J. G. Manning, & B. Partridge (ed.) Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol. 400, pp. 190 (2008)

    Google Scholar 

  25. Hulse, R.A., Taylor, J.H.: Discovery of a pulsar in a binary system. ApJ 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  26. Jaffe, A.H., Backer, D.C.: Gravitational waves probe the coalescence rate of massive black hole binaries. ApJ 583, 616–631 (2003)

    Article  ADS  Google Scholar 

  27. Jenet, F., et al.: The North American Nanohertz Observatory for Gravitational Waves. ArXiv e-prints 0909.1058 (2009)

    Google Scholar 

  28. Jenet, F.A., Hobbs, G.B., Lee, K.J., Manchester, R.N.: Detecting the Stochastic Gravitational Wave Background Using Pulsar Timing. ApJ 625, L123–L126 (2005)

    Article  ADS  Google Scholar 

  29. Jenet, F.A., et al.: Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects. ApJ 653, 1571–1576 (2006).

    Article  ADS  Google Scholar 

  30. Jenet, F.A., Lommen, A., Larson, S.L., Wen, L.: Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. ApJ 606, 799–803 (2004)

    Article  ADS  Google Scholar 

  31. Johnston, S., et al.: Science with the Australian Square Kilometre Array Pathfinder. PASA 24, 174–188 (2007)

    ADS  Google Scholar 

  32. Johnston, S., et al. Science with ASKAP. The Australian square-kilometre-array pathfinder.

    Google Scholar 

  33. Experimental Astronomy 22, 151–273 (2008).

    Google Scholar 

  34. Kaspi, V.M., Taylor, J.H., Ryba, M.: High-precision timing of millisecond pulsars. III. Longterm

    Google Scholar 

  35. monitoring of PSRs B1855+09 and B1937+21. ApJ 428, 713–728 (1994)

    Google Scholar 

  36. Kocsis, B., G´asp´ar, M.E., M´arka, S.: Detection rate estimates of gravity waves emitted during

    Google Scholar 

  37. parabolic encounters of stellar black holes in globular clusters. ApJ 648, 411–429 (2006).

    Google Scholar 

  38. Kopeikin, S.M.: Binary Pulsars as Detectors of Ultra-Low Frequency Graviational Waves. Phys. Rev. D 56, 4455 (1997)

    Article  ADS  Google Scholar 

  39. Lee, K.J., Jenet, F.A., Price, R.H.: Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves. ApJ 685, 1304–1319 (2008).

    Article  ADS  Google Scholar 

  40. Lommen, A.N., Backer, D.C.: Using pulsars to detect massive black hole binaries via gravitational radiation: Sagittarius A* and nearby galaxies. ApJ 562, 297–302 (2001)

    Article  ADS  Google Scholar 

  41. Maggiore, M.: Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283–367 (2000)

    Article  ADS  Google Scholar 

  42. Manchester, R.N.: Detection of Gravitational Waves using Pulsar Timing. ArXiv e-prints 1004.3602 (2010)

    Google Scholar 

  43. McHugh, M.P., Zalamansky, G., Vernotte, F., Lantz, E.: Pulsar timing and the upper limits on a gravitational wave background: A Bayesian approach. Phys. Rev. D 54, 5993–6000 (1996)

    Article  ADS  Google Scholar 

  44. Nan, R.D., Wang, Q.M., Zhu, L.C., Zhu, W.B., Jin, C.J., Gan, H.Q.: Pulsar Observations with Radio Telescope FAST. Chin. J. Atron. Astrophys., Suppl. 2 6, 304–310 (2006)

    Google Scholar 

  45. Olmez, S., Mandic, V., Siemens, X.: Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings. ArXiv e-prints 1004.0890 (2010)

    Google Scholar 

  46. Pollney, D., Reisswig, C.: Gravitational memory in binary black hole mergers. ArXiv e-prints 1004.4209 (2010)

    Google Scholar 

  47. Pshirkov, M.S.: Investigating ultra-long gravitational waves with measurements of pulsar rotational parameters. MNRAS 398, 1932–1935 (2009).

    Article  ADS  Google Scholar 

  48. Pshirkov, M.S., Baskaran, D., Postnov, K.A.: Observing gravitational wave bursts in pulsar timing measurements. MNRAS 402, 417–423 (2010).

    Article  ADS  Google Scholar 

  49. Pshirkov, M.S., Tuntsov, A.V.: Local constraints on cosmic string loops from photometry and pulsar timing. Phys. Rev. D 81(8), 083,519 (2010).

    Google Scholar 

  50. Rajagopal, M., Romani, R.W.: Ultra–Low-Frequency Gravitational Radiation from Massive Black Hole Binaries. ApJ 446, 543–549 (1995)

    Article  ADS  Google Scholar 

  51. Rodin, A.E.: Optimal filters for the construction of the ensemble pulsar time. MNRAS 387, 1583–1588 (2008).

    Article  ADS  Google Scholar 

  52. Rodriguez, C., Taylor, G.B., Zavala, R.T., Peck, A.B., Pollack, L.K., Romani, R.W.: A Compact Supermassive Binary Black Hole System. ApJ 646, 49–60 (2006).

    Article  ADS  Google Scholar 

  53. Romani, R.W.: Timing a millisecond pulsar array. In: H. ¨Ogelman, E.P.J. van den Heuvel (eds.) Timing Neutron Stars, pp. 113–117 (1989)

    Google Scholar 

  54. Saito, R., Yokoyama, J.: Gravitational-Wave Background as a Probe of the Primordial Black- Hole Abundance. Phys. Rev. Lett. 102(16), 161,101 (2009).

    Google Scholar 

  55. Sazhin, M.V.: Sov. Astron. 22, 36 (1978)

    ADS  Google Scholar 

  56. Sesana, A., Haardt, F.,Madau, P., Volonteri,M.: Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies. ApJ 611, 623–632 (2004).

    Article  ADS  Google Scholar 

  57. Sesana, A., Vecchio, A.: Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. prd 81(10), 104,008 (2010).

    Google Scholar 

  58. Sesana, A., Vecchio, A., Colacino, C.N.: The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. MNRAS 390, 192–209 (2008).

    Article  ADS  Google Scholar 

  59. Sesana, A., Vecchio, A., Volonteri, M.: Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays. MNRAS 394, 2255–2265 (2009).

    Article  ADS  Google Scholar 

  60. Seto, N.: Search for memory and inspiral gravitational waves from supermassive binary black holes with pulsar timing arrays. MNRAS 400, L38–L42 (2009).

    ADS  Google Scholar 

  61. Sillanpaa, A., et al.: Confirmation of the 12-year optical outburst cycle in blazar OJ 287. A&A 305, L17 (1996)

    ADS  Google Scholar 

  62. Smarr, L.L., Blandford, R.: The binary pulsar: Physical processes, possible companions and evolutionary histories. ApJ 207, 574–588 (1976)

    Article  ADS  Google Scholar 

  63. Stinebring, D.R., Ryba, M.F., Taylor, J.H., Romani, R.W.: Cosmic gravitational–wave background: Limits from millisecond pulsar timing. Phys. Rev. Lett. 65, 285–288 (1990)

    Article  ADS  Google Scholar 

  64. Sudou, H., Iguchi, S., Murata, Y., Taniguchi, Y.: Orbital Motion in the Radio Galaxy 3C 66B: Evidence for a Supermassive Black Hole Binary. Science 300, 1263–1265 (2003).

    Article  ADS  Google Scholar 

  65. Taylor, J.H., Weisberg, J.M.: A new test of general relativity: Gravitational radiation and the binary pulsar PSR 1913+16. ApJ 253, 908–920 (1982)

    Article  ADS  Google Scholar 

  66. Thorne, K.S., Braginskii, V.B.: Gravitational-wave bursts from the nuclei of distant galaxiesand quasars - proposal for detection using doppler tracking of interplanetary spacecraft. ApJ 204, L1–L6 (1976)

    Article  ADS  Google Scholar 

  67. van Haasteren, R., Levin, Y.: Gravitational-wave memory and pulsar timing arrays. MNRAS 401, 2372–2378 (2010).

    Article  ADS  Google Scholar 

  68. van Haasteren, R., Levin, Y.,McDonald, P., Lu, T.: On measuring the gravitational-wave background using pulsar timing arrays. mnras 395, 1005–1014 (2009).

    Google Scholar 

  69. van Straten, W.: Radio astronomical polarimetry and high-precision pulsar timing. ApJ 642, 1004–1011 (2006).

    Article  ADS  Google Scholar 

  70. van Straten, W., Manchester, R.N., Johnston, S., Reynolds, J.: PSRCHIVE and PSRFITS: Definition of the Stokes Parameters and Instrumental Basis Conventions. PASA, 27, 104 (2009). In press

    Google Scholar 

  71. Verbiest, J.P.W., et al.: Status update of the parkes pulsar timing array. Classical and Quantum Gravity 27(8), 084,015 (2010).

    Google Scholar 

  72. Verbiest, J.P.W. et al.: Timing stability of millisecond pulsars and prospects for gravitationalwave detection. MNRAS 400, 951–968 (2009).

    Article  ADS  Google Scholar 

  73. Verbiest, J.P.W., et al.: Precision timing of PSR J0437-4715: an accurate pulsar distance, a high pulsar mass and a limit on the variation of Newton’s gravitational constant. ApJ 679, 675–680 (2008).

    Article  ADS  Google Scholar 

  74. Wen, Z.L., Liu, F.S., Han, J.L.: Mergers of luminous early-type galaxies in the local universe and gravitational wave background. ApJ 692, 511–521 (2009).

    Article  ADS  Google Scholar 

  75. Wyithe, J.S.B., Loeb, A.: Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays. ApJ 590, 691–706 (2003)

    Article  ADS  Google Scholar 

  76. Yardley, D.R.B., et al.: The Sensitivity of the Parkes Pulsar TimingArray to Individual Sources of Gravitational Waves. ArXiv e-prints 1005.1667 (2010)

    Google Scholar 

  77. You, X.P., et al.: Dispersion measure variations and their effect on precision pulsar timing. MNRAS 378, 493–506 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hobbs, G. (2011). Pulsars as gravitational wave detectors. In: Torres, D., Rea, N. (eds) High-Energy Emission from Pulsars and their Systems. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17251-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17251-9_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17250-2

  • Online ISBN: 978-3-642-17251-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics