Skip to main content

Nonlinear Control of a Robot Manipulator with Time-Varying Uncertainties

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6414))

Abstract

In this paper, two nonlinear control methods including adaptive learning control and adaptive robust control are designed for a robotic manipulator with time-varying uncertainties. We first present an adaptive learning control by incorporated learning control approaches into an adaptive control system to handle periodic uncertainties with known periods. We explore Lyapunov functional method to design the controller such that the convergence of tracking errors can be ensured. If the periods of uncertaines are unknown or uncertainties are non-periodic, an adaptive robust control is further designed to guarantee that the solution trajectory is finite and arbitrarily close to the desired trajectory by choosing design parameters in the controller. The efficacy of the proposed nonlinear controllers has been demonstrated in a two-link robot manipulator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arimoto, S.: Control Theory of Nonlinear Mechanical Systems-A Passivity-Based and Circuit-Theoretic Approach. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  2. Buss, S., Kim, J.S.: Selectively damped least squares for inverse kinematics. Journal of Graphics tools 10(3), 37–49 (2005)

    Article  Google Scholar 

  3. Choi, J.Y., Lee, J.S.: Adaptive iterative learning control of uncertain robotic systems. Inst. Elect. Eng. Proc. 147(2), 217–223 (2000)

    Google Scholar 

  4. Sun, M.X., Ge, S.S., Mareels, M.Y.: Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning. IEEE Trans. Robot. 22(3), 563–568 (2006)

    Article  Google Scholar 

  5. Ge, S.S., Lee, T.H., Hang, C.C.: Structure network modeling and control of rigid body robots. IEEE Trans. Robot. Autom. 14(5), 823–826 (1998)

    Article  Google Scholar 

  6. Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, London (1998)

    Book  Google Scholar 

  7. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. Macmillan, New York (1993)

    Google Scholar 

  8. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of robot Manipulators and Nonlinear Systems. Taylor & Francis, London (1999)

    Google Scholar 

  9. Maciejewski, A.A., Klein, C.K.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. International Journal of Robotics Research 4, 109–117 (1985)

    Article  Google Scholar 

  10. Norrlof, M.: An adaptive iterative learning control algorithm with experiments on an industrial robot. IEEE Trans. Robot. Autom. 18(2), 245–251 (2002)

    Article  Google Scholar 

  11. Qu, Z.H., Dawson, D.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996)

    MATH  Google Scholar 

  12. Sadegh, N., Horowitz, R.: Stability and robustness analysis of a class of adaptive controller for robotic manipulators. Int. J. Robot. Res. 9(3), 74–92 (1990)

    Article  Google Scholar 

  13. Slotine, J.J.E., Li, W.: Adaptive manipulator control: a case study. IEEE Trans. Autom. Control 33(11), 995–1003 (1988)

    Article  MATH  Google Scholar 

  14. Spong, M.W., Midyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  15. Tomei, P.: Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, J.X., Viswanathan, B., Qu, Z.H.: Robust learning control for robotic manipulators with an extension to a class of non-linear system. Int. J. Control 73(10), 858–870 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, J.X., Yan, R.: Synchronization of chaotic systems via learning control. International journal of bifurcation and Chaos 15(12), 4035–4041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, J.X., Yan, R.: On repetitive learning control for periodic tracking tasks. IEEE Trans. on Automatic Control 51(11), 1842–1848 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, R., Tee, K.P., Li, H. (2010). Nonlinear Control of a Robot Manipulator with Time-Varying Uncertainties. In: Ge, S.S., Li, H., Cabibihan, JJ., Tan, Y.K. (eds) Social Robotics. ICSR 2010. Lecture Notes in Computer Science(), vol 6414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17248-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17248-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17247-2

  • Online ISBN: 978-3-642-17248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics