Advertisement

QPME 2.0 - A Tool for Stochastic Modeling and Analysis Using Queueing Petri Nets

  • Samuel Kounev
  • Simon Spinner
  • Philipp Meier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6462)

Abstract

Queueing Petri nets are a powerful formalism that can be exploited for modeling distributed systems and analyzing their performance and scalability. By combining the modeling power and expressiveness of queueing networks and stochastic Petri nets, queueing Petri nets provide a number of advantages. In this paper, we present Version 2.0 of our tool QPME (Queueing Petri net Modeling Environment) for modeling and analysis of systems using queueing Petri nets. The development of the tool was initiated by Samuel Kounev in 2003 at the Technische Universität Darmstadt in the group of Prof. Alejandro Buchmann. Since then the tool has been distributed to more than 100 organizations worldwide. QPME provides an Eclipse-based editor for building queueing Petri net models and a powerful simulation engine for analyzing the models. After presenting the tool, we discuss ongoing work on the QPME project and the planned future enhancements of the tool.

Keywords

Schedule Strategy Query Engine Data Collection Mode Mersenne Twister Token Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bause, F.: Queueing Petri Nets - A formalism for the combined qualitative and quantitative analysis of systems. In: Proc. of 5th Intl. Workshop on Petri Nets and Perf. Models, Toulouse, France, October 19-22 (1993)Google Scholar
  2. 2.
    Bause, F., Buchholz, P., Kemper, P.: Integrating Software and Hardware Performance Models Using Hierarchical Queueing Petri Nets. In: Proc. of the 9. ITG / GI - Fachtagung Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen, Freiberg, Germany (1997)Google Scholar
  3. 3.
    Bause, F., Kritzinger, F.: Stochastic Petri Nets - An Introduction to the Theory. Vieweg Verlag (2002)Google Scholar
  4. 4.
    Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, Technology, and Tools. In: Proc. of 24th Intl. Conf. on Application and Theory of Petri Nets, June 23-27, Eindhoven, Holland (2003)Google Scholar
  5. 5.
    Carson, J., Law, A.: Conservation Equations and Variance Reduction in Queueing Simulations. Operations Research 28 (1980)Google Scholar
  6. 6.
    CERN - European Organisation for Nuclear Research. The Colt Distribution - Open Source Libraries for High Performance Scientific and Technical Computing in Java (2004), http://dsd.lbl.gov/~hoschek/colt/
  7. 7.
    Descartes Research Group (August 2010), http://www.descartes-research.net
  8. 8.
    Dutz, C.: QPE - A Graphical Editor for Modeling using Queueing Petri Nets. Master thesis, Technische Universität Darmstadt (April 2006)Google Scholar
  9. 9.
    Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Systems using Queueing Petri Nets. IEEE Transactions on Software Engineering 32(7), 486–502 (2006)CrossRefGoogle Scholar
  10. 10.
    Kounev, S.: QPME 2.0 User’s Guide. Descartes Research Group, Karlsruhe Institute of Technology (KIT) (August 2010)Google Scholar
  11. 11.
    Kounev, S., Buchmann, A.: Performance Modelling of Distributed E-Business Applications using Queuing Petri Nets. In: Proc. of the 2003 IEEE Intl. Symposium on Performance Analysis of Systems and Software, Austin, USA, March 20-22 (2003)Google Scholar
  12. 12.
    Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queueing Petri net models by means of simulation. Performance Evaluation 63(4-5), 364–394 (2006)CrossRefGoogle Scholar
  13. 13.
    Kounev, S., Dutz, C.: QPME - A Performance Modeling Tool Based on Queueing Petri Nets. ACM SIGMETRICS Performance Evaluation Review (PER), Special Issue on Tools for Computer Performance Modeling and Reliability Analysis 36(4), 46–51 (2009)CrossRefGoogle Scholar
  14. 14.
    Kounev, S., Nou, R., Torres, J.: Autonomic QoS-Aware Resource Management in Grid Computing using Online Performance Models. In: Proc. of 2nd Intl. Conf. on Perf. Evaluation Methodologies and Tools - VALUETOOLS, Nantes, France, October 23-25 (2007)Google Scholar
  15. 15.
    Kounev, S., Sachs, K., Bacon, J., Buchmann, A.: A Methodology for Performance Modeling of Distributed Event-Based Systems. In: Proc. of 11th IEEE Intl. Symp. on Object/Comp./Service-oriented Real-time Distr. Computing (ISORC), Orlando, USA (May 2008)Google Scholar
  16. 16.
    Law, A., Kelton, D.W.: Simulation Modeling and Analysis, 3rd edn. Mc Graw Hill Companies, New York (2000)zbMATHGoogle Scholar
  17. 17.
    Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans. on Modeling and Comp. Simulation 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nou, R., Kounev, S., Julia, F., Torres, J.: Autonomic QoS control in enterprise Grid environments using online simulation. Journal of Systems and Software 82(3), 486–502 (2009)CrossRefGoogle Scholar
  19. 19.
    Pawlikowski, K.: Steady-State Simulation of Queueing Processes: A Survey of Problems and Solutions. ACM Computing Surveys 22(2), 123–170 (1990)CrossRefGoogle Scholar
  20. 20.
    QPME Homepage (August 2010), http://descartes.ipd.kit.edu/projects/qpme/
  21. 21.
    Sachs, K.: Performance Modeling and Benchmarking of Event-based Systems. PhD thesis, TU Darmstadt (2010)Google Scholar
  22. 22.
    Steiger, N., Lada, E., Wilson, J., Joines, J., Alexopoulos, C., Goldsman, D.: ASAP3: a batch means procedure for steady-state simulation analysis. ACM Transactions on Modeling and Computer Simulation 15(1), 39–73 (2005)CrossRefGoogle Scholar
  23. 23.
    The Eclipse Foundation. Graphical Editing Framework (GEF) (2006), http://www.eclipse.org/gef/
  24. 24.
    Zipp, F.: Study Thesis : Filterung, Aggregation und Visualisierung von QPN-Analyseergebnissen. Descartes Research Group, Karlsruhe Institute of Technology (KIT) (May 2009) (in German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samuel Kounev
    • 1
  • Simon Spinner
    • 1
  • Philipp Meier
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations