On Scientific Experiments and Flexible Service Compositions

  • Dimka Karastoyanova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6462)


The IT support for scientific experimenting and e-science is currently not at the level of maturity of the support enterprises obtain. Since recently there is a trend of reusing existing enterprise software and related concepts for scientific experiments, scientific workflows and simulation. Most notably these are the workflow technology, which is widely used in business process management (BPM), and integration paradigms like the service oriented architecture (SOA). In this work we give an overview of open issues in the support for scientific experiments and possible approaches to addressing them in a service-based environment. We identify the need for enhancing the BPM practices, technologies and techniques in order to render them applicable in the area of scientific experimenting. We stress on the even greater importance of workflow flexibility and also show why flexibility techniques are crucial when it is about improving the IT support for scientists.


Scientific Experiments Scientific Workflows Simulation Workflow Service Oriented Computing and Architecture Service Composition BPEL Compensation Aspect-orientation Flexibility Adaptability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OASIS: Web Services Business Process Execution Language Version 2.0. OASIS Standard (2007),
  2. 2.
    Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, Englewood Cliffs (2005)Google Scholar
  3. 3.
    W3C: Web Services Description Language (WSDL) Version 2.0 Part 0: Primer (2007),
  4. 4.
    Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration Logic. In: Proceedings of the 7th International Conference on Web Services, ICWS 2009 (2009)Google Scholar
  5. 5.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall, Englewood Cliffs (2000)zbMATHGoogle Scholar
  6. 6.
    Reichert, M., Dadam, P.: Adeptflex – Supporting Dynamic Changes of Workflows Without Losing Control. Journal of Intelligent Information Systems 10(2) (1998)Google Scholar
  7. 7.
    Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition. In (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    W3C: Web Services Policy 1.5 – Attachment. W3C Recommendation (2007),
  9. 9.
    Wiselka, M.: Erweiterung einer AOP-fähigen BPEL Engine um die Kompensation von eingewobenen Aktivitäten. Diploma Thesis No. 2905, University of Stuttgart (2009)Google Scholar
  10. 10.
    Niemöller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.: Aspect Orientation for Composite Services in the Telecommunication Domain. In: Proceedings of 7th International Joint Conference ICSOC-Service Wave (2009)Google Scholar
  11. 11.
    Charfi, A.: Aspect-Oriented Workflow Languages: AO4BPEL and Applications, Fachbereich Informatik, TU Darmstadt, PhD Thesis (2007)Google Scholar
  12. 12.
    Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proceedings of ICSE (2005)Google Scholar
  13. 13.
    Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Baresi, L., Guinea, S.: A Dynamic and Reactive Approach to the Supervision of BPEL Processes. In: Proceedings of the 1st India Software Engineering Conference, ISEC (2008)Google Scholar
  15. 15.
    van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification of issues and solutions. International Journal of Computer Systems Science and Engineering 15(5) (2000)Google Scholar
  16. 16.
    van der Aalst, W., van Hee, K.: Workflow Management. Model, Methods and Systems. MIT Press, Cambridge (2002)Google Scholar
  17. 17.
    Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol (2004)Google Scholar
  18. 18.
    Czajkowski, K., et al.: From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring & Evolution. Global Grid Forum Draft Recommendation (2004)Google Scholar
  19. 19.
    Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.: Grid Service Orchestration Using the Business Process Execution Language (BPEL). Journal of Grid Computing 3, 283–304 (2005)CrossRefGoogle Scholar
  20. 20.
    Foster, I.: What is the Grid? - a three point checklist. GRIDtoday 1 (2002),
  21. 21.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco (2004)Google Scholar
  22. 22.
    Fox, G.C., Gannon, D.: Workflow in Grid Systems. Concurrency and Computation: Practice and Experience 18, 1009–1019 (2006)CrossRefGoogle Scholar
  23. 23.
    Gannon, D.: A Service Architecture for eScience Grid Gateways. In: Grid Computing, High-Performance and Distributed Applications, GADA 2007 (2007)Google Scholar
  24. 24.
    Gehlert, A., Hielscher, J., Danylevych, O., Karastoyanova, D.: Online Testing, Requirements Engineering and Service Faults as Drivers for Adapting Service Compositions. In: Proceedings of MONA+ at ServiceWave (2008)Google Scholar
  25. 25.
    Kaye, D.: Loosely Coupled: The Missing Pieces of Web services. RDS Press (2003)Google Scholar
  26. 26.
    Karastoyanova, D., Leymann, F.: Making scientific applications on the grid reliable through flexibility approaches borrowed from service compositions. In: Antonopoulos, et al. (eds.) Handbook of research on P2P and grid systems for service-oriented computing: Models, methodologies and applications, Information Science Publishing, United Kingdom (2009)Google Scholar
  27. 27.
    Karastoyanova, D., Van Lessen, T., Nitzsche, J., Wetzstein, B., Wutke, D., Leymann, F.: Semantic Service Bus: Architecture and Implementation of a Next Generation Middleware. In: Proceedings of the 2nd International Workshop on Services Engineering (SEIW) 2007, in conjunction with ICDE (2007)Google Scholar
  28. 28.
    Karastoyanova, D.: Enhancing Flexibility and Reusability of Web Service Flows through Parameterization. PhD Thesis. TU-Darmstadt, Shaker Verlag (2006)Google Scholar
  29. 29.
    Karastoyanova, D., et al.: Parameterized BPEL Processes: Concepts and Implementation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 471–476. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.: Extending BPEL for Run Time Adaptability. In: Proceeding of EDOC (2005)Google Scholar
  31. 31.
    Keller, A., Badonnel, R.: Automating the Provisioning of Application Services with the BPEL4WS Workflow Language. In: Sahai, A., Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, pp. 15–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling the Execution of Extended BPEL Behavior. In: Proceedings of the 3rd ICSOC International Workshop on Engineering Service-Oriented Application: Analysis, Design and Composition (WESOA 2007). Springer, Heidelberg (2007)Google Scholar
  33. 33.
    van Lessen, T., Nitzsche, J., Dimitrov, M., Konstantinov, M., Karastoyanova, D., Cekov, L.: An Execution Engine for Semantic Business Process. In: 2nd International Workshop on Business Oriented Aspects concerning Semantics and Methodologies in Service-oriented Computing (SeMSoC), in conjunction with ICSOC (2007)Google Scholar
  34. 34.
    Leymann, F.: The (Service) Bus: Services Penetrate Everyday Life. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 12–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Leymann, F.: Choreography for the Grid: towards fitting BPEL to the Resource Framework: Research Articles. Journal of Concurrency and Computation: Practice & Experience 18, 1201–1217 (2006)CrossRefGoogle Scholar
  36. 36.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR, Englewood Cliffs (1999)zbMATHGoogle Scholar
  37. 37.
    Mietzner, R., Karastoyanova, D., Leymann, F.: Business Grid: Combining Web services and the Grid. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets. LNCS, vol. 5460, pp. 136–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL light. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 214–229. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    OASIS Web services Resource Framework (WSRF) TC (2008),
  40. 40.
    Sonntag, M., Karastoyanova, D.: Next Generation Interactive Scientific Experimenting Based On The Workflow Technology. In: 21st IASTED International Conference on Modelling and Simulation (2010)Google Scholar
  41. 41.
    Sonntag, M., Karastoyanova, D., Leymann, F.: The Missing Features of Workflow Systems for Scientific Computations. In: Proceedings of the 3rd Grid Workflow Workshop, GWW (2010)Google Scholar
  42. 42.
    Sonntag, M., Görlach, K., Karastoyanova, D., Leymann, F., Reiter, M.: Process Space-based Scientific Workflow Enactment. International Journal of Business Process Integration and Management (IJBPIM) Special Issue on Scientific Workflows 5(1), 32–44 (2010)CrossRefGoogle Scholar
  43. 43.
    Sonntag, M.: BPEL4Pegasus Demonstration Video (2010),
  44. 44.
    SimTech Cluster of Excellence at the University of Stuttgart:
  45. 45.
    Ludaescher, B., et al.: Scientific workflows: Business as usual? In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business Process Management. LNCS, vol. 5701, pp. 31–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  46. 46.
    Altintas, I., et al.: Kepler: An extensible system for design and execution of scientific workflows. In: Proc. International Conf. on Scientific and Statistical Database Management (2004)Google Scholar
  47. 47.
    Churches, D., et al.: Programming scientific and distributed workflow with Triana services. In: Concurrency and Computation: Practice and Experience. Special Issue on Scientific Workflows (2005) Google Scholar
  48. 48.
    Oinn, T., et al.: Taverna: Lessons in creating a workflow environment for the life sciences. Concurrency and Computation: Practice and Experience 18(10), 1067–110 (2006) doi:10.1002/cpe.993Google Scholar
  49. 49.
    Deelman, E., et al.: Pegasus: Mapping scientific workflows onto the grid. In: Proc. of 2nd European AcrossGrids Conf., pp. 11–20. Springer, Heidelberg (2004)Google Scholar
  50. 50.
    Mietzner, R., Leymann, F.: Towards Provisioning the Cloud: On the Usage of Multi-Granularity Flows and Services to Realize a Unified Provisioning Infrastructure for SaaS Applications. In: Proceedings of the International Congress on Services, SERVICES (2008)Google Scholar
  51. 51.
    Reimann, P.: Optimization of BPEL/SQL Flows in Federated Database Systems, Diploma Thesis No. 2744 (2008)Google Scholar
  52. 52.
    Wieland, M., Görlach, K., Schumm, D., Leymann, F.: Towards Reference Passing in Web Service and Workflow-based Applications. In: Proceedings of the 13th IEEE Enterprise Distributed Object Conference, EDOC 2009 (2009)Google Scholar
  53. 53.
    Benzing, A., Koldehofe, B., Rothermel, K.: Distributed Diagnostic Simulations for the Smart Grid. Accepted Poster at the 1st International Conference on Energy-Efficient Computing and Networking: E-Energy (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dimka Karastoyanova
    • 1
  1. 1.Institute of Architecture of Application SystemsUniversity of StuttgartGermany

Personalised recommendations