Sources, Dynamics and Management of Phosphorus in a Southern Baltic Estuary

  • Gerald SchernewskiEmail author
  • Thomas Neumann
  • Horst Behrendt†
Part of the Central and Eastern European Development Studies (CEEDES) book series (CEEDES)


Today, phosphorus is regarded as the key nutrient for Baltic Sea eutrophication management. Major sources are large rivers like the Oder, Vistula and Daugava in the southern Baltic region. Before entering the Baltic Sea, these rivers discharge their nutrient load into coastal estuaries, bays and lagoons. The quantitative role of these coastal waters, with restricted water exchange, for Baltic Sea management is very important, but not well known. Taking the Oder/Odra estuary as an example, we analyse the long-term pollution history and the major sources for phosphorus and calculate a phosphorus budget, with special focus on anoxic phosphorus release from sediments. The budget shows that due to internal eutrophication in July 2000 the lagoon became a major temporary source of phosphorus for the Baltic Sea. A phosphorus emission reduction scenario, taking into account diffuse and point sources in the entire Oder/Odra river basin, is presented. Phosphorus load reductions have only limited effect on the eutrophic state of the lagoon. The lagoon is more sensitive to nitrogen load reductions. Therefore, both elements have to be taken into account in measures to reduce eutrophication.


Szczecin lagoon Hypoxia Eutrophication Water quality Nutrient loads Sediment 



This chapter is dedicated to Horst Behrendt, who died, much too early, in December 2008. The work has been supported by the projects IKZM-Oder III (Federal Ministry for Education and Research; 03F0403A & 03F0465A) and BONUS+ project AMBER (Assessment and Modelling Baltic Ecosystem Response). Data have been kindly supplied by the State Agency of Environment, Protection of Nature and Geology Mecklenburg-Vorpommern (LUNG). Supercomputing power was provided by HLRN (Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen).


  1. Behrendt H, Dannowski R (eds) (2005) Nutrients and heavy metals in the Odra river system. Weißensee Verlag, BerlinGoogle Scholar
  2. Behrendt H, Opitz D, Kolanek A, Korol R, Stronska M (2008) Changes of the nutrient loads of the Odra River during the last century – their causes and consequences. Journal of Water Land Development 12:127–144Google Scholar
  3. Boesch D, Hecky R, O’Melia C, Schindler D, Seitzinger S (2006) Eutrophication of Swedish seas. Swedish Environmental Protection Agency, Naturvårdsverket, Stockholm, Sweden, ISBN 91-620-5509-7Google Scholar
  4. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015CrossRefGoogle Scholar
  5. Elmgren R, Larsson U (2001) Eutrophication in the Baltic Sea area. In: Bodungen B, Turner RK (eds) Science and integrated coastal management. Dahlem University Press, Berlin, pp 15–35Google Scholar
  6. Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–229Google Scholar
  7. Helsinki Commission (Helcom) (2005) Airborne nitrogen loads to the Baltic Sea. Report, pp 24Google Scholar
  8. HELCOM (2007) Baltic Sea action plan, Accessed 26 November 2010
  9. Lampe R (1999) The Odra estuary as a filter and transformation area. Acta hydrochimica et hydrobiologica 27:292–297CrossRefGoogle Scholar
  10. Leipe T, Eidam J, Lampe R, Meyer H, Neumann T, Odsadczuk A, Janke W, Puff T, Blanz T, Gingele FX, Dannenberger D, Witt G (1998) Das Oderhaff – Beiträge zur Rekonstruktion der holozänen geologischen und anthropogenen Beeinflussung des Oder-Ästuares. Meereswiss. Berichte No. 28, 61 SGoogle Scholar
  11. Meyer H, Lampe R (1999) The restricted buffer capacity of a South Baltic estuary – the Oder estuary. Limnologica 29:242–248Google Scholar
  12. Neumann T (2000) Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine System 25(3–4):405–419CrossRefGoogle Scholar
  13. Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Global Biogeochemical Cycles 16(7-1):7–19Google Scholar
  14. Neumann T, Schernewski G (2008) Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. Journal of Marine System 74:592–602CrossRefGoogle Scholar
  15. Pacanowski RC, Griffies SM (2000) MOM 3.0 manual. Technical report, Geophysical Fluid Dynamics LaboratoryGoogle Scholar
  16. Schernewski G (1999) Der Stoffhaushalt von Seen: Bedeutung zeitlicher Variabilität und räumlicher Heterogeniät von Prozessen sowie des Betrachtungsmaßstabs. Marine Science Reports 36:275Google Scholar
  17. Schernewski G, Wielgat M (2001) Eutrophication of the shallow Szczecion Lagoon (Baltic Sea): modeling, management and the impact of weather. In: Brebbia CA (ed) Coastal engineering: computer modelling of seas and coastal regions. WIT Press, Southampton, pp 87–98Google Scholar
  18. Schindler DW, Hecky RE (2009) Eutrophication: more nitrogen data needed. Science 324:721CrossRefGoogle Scholar
  19. Wielgat M, Witek Z (2004) A dynamic box model of the Szczecin Lagoon nutrient cycling and its first application to the calculation of the nutrient budget. In: Schernewski G, Dolch T (eds) The Oder estuary, against the background of the Water Framework Directive. Marine Science Reports 57:99–125Google Scholar
  20. Wulff F, Bonsdorff E, Gren I-M, Johansson S, Stigebrandt A (2001) Giving advice on cost effective measurements for a cleaner Baltic Sea: a challenge for science. Ambio 30:254–259Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerald Schernewski
    • 1
    Email author
  • Thomas Neumann
    • 1
  • Horst Behrendt†
    • 2
  1. 1.Leibniz Institute for Baltic Sea Research WarnemündeRostockGermany
  2. 2.Leibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations