Skip to main content

Overcoming Insulin Resistance with Ciliary Neurotrophic Factor

  • Chapter
  • First Online:
Diabetes - Perspectives in Drug Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 203))

Abstract

The incidence of obesity and related co-morbidities such as insulin resistance, dyslipidemia and hypertension are increasing at an alarming rate worldwide. Current interventions seem ineffective to halt this progression. With the failure of leptin as an anti-obesity therapeutic, ciliary neurotrophic factor (CNTF) has proven efficacious in models of obesity and leptin resistance, where leptin proved ineffective. CNTF is a gp130 ligand that has been found to act centrally and peripherally to promote weight loss and insulin sensitivity in both human and rodent models. Future research into novel gp130 ligands may offer new candidates for obesity-related drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACTS (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 46(5):1244–1249

    Google Scholar 

  • Adler R, Landa KB, Manthorpe M, Varon S (1979) Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons. Science 204:1434–1436

    CAS  PubMed  Google Scholar 

  • Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    CAS  PubMed  Google Scholar 

  • Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A (1999) The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10:1463–1475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Banks AS, Davis SM, Bates SH, Myers MG Jr (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572

    CAS  PubMed  Google Scholar 

  • Bazan JF (1991) Neuropoietic cytokines in the hematopoietic fold. Neuron 7:197–208

    CAS  PubMed  Google Scholar 

  • Bellido T, Stahl N, Farruggella TJ, Borba V, Yancopoulos GD, Manolagas SC (1996) Detection of receptors for interleukin-6, interleukin-11, leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in bone marrow stromal/osteoblastic cells. J Clin Invest 97:431–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1:619–625

    CAS  PubMed  Google Scholar 

  • Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065

    CAS  PubMed  Google Scholar 

  • Bjorbaek C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275:40649–40657

    CAS  Google Scholar 

  • Bluher S, Moschos S, Bullen J Jr, Kokkotou E, Maratos-Flier E, Wiegand SJ, Sleeman MW, Mantzoros CS (2004) Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53:2787–2796

    PubMed  Google Scholar 

  • Bluher S, Bullen J, Mantzoros CS (2008) Altered levels of adiponectin and adiponectin receptors may underlie the effect of ciliary neurotrophic factor (CNTF) to enhance insulin sensitivity in diet-induced obese mice. Horm Metab Res 40:225–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boulton TG, Stahl N, Yancopoulos GD (1994) Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J Biol Chem 269:11648–11655

    CAS  PubMed  Google Scholar 

  • Brady LS, Smith MA, Gold PW, Herkenham M (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52:441–447

    CAS  PubMed  Google Scholar 

  • Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697

    CAS  PubMed  Google Scholar 

  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    CAS  PubMed  Google Scholar 

  • Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 28:7202–7208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crowe S, Turpin SM, Ke F, Kemp BE, Watt MJ (2008) Metabolic remodeling in adipocytes promotes ciliary neurotrophic factor-mediated fat loss in obesity. Endocrinology 149:2546–2556

    CAS  PubMed  Google Scholar 

  • Cummings S, Apovian CM, Khaodhiar L (2008) Obesity surgery: evidence for diabetes prevention/management. J Am Diet Assoc 108:S40–S44

    PubMed  Google Scholar 

  • Daeipour M, Kumar G, Amaral MC, Nel AE (1993) Recombinant IL-6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF-10. J Immunol 150:4743–4753

    CAS  PubMed  Google Scholar 

  • Davis S, Aldrich TH, Valenzuela DM, Wong VV, Furth ME, Squinto SP, Yancopoulos GD (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63

    CAS  PubMed  Google Scholar 

  • Davis S, Aldrich TH, Ip NY, Stahl N, Scherer S, Farruggella T, DiStefano PS, Curtis R, Panayotatos N, Gascan H et al (1993) Released form of CNTF receptor alpha component as a soluble mediator of CNTF responses. Science 259:1736–1739

    CAS  PubMed  Google Scholar 

  • DeChiara TM, Vejsada R, Poueymirou WT, Acheson A, Suri C, Conover JC, Friedman B, McClain J, Pan L, Stahl N, Ip NY, Yancopoulos GD (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83:313–322

    CAS  PubMed  Google Scholar 

  • Derouet D, Rousseau F, Alfonsi F, Froger J, Hermann J, Barbier F, Perret D, Diveu C, Guillet C, Preisser L, Dumont A, Barbado M, Morel A, deLapeyriere O, Gascan H, Chevalier S (2004) Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA 101:4827–4832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Di Marco A, Gloaguen I, Graziani R, Paonessa G, Saggio I, Hudson KR, Laufer R (1996) Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc Natl Acad Sci USA 93:9247–9252

    PubMed Central  PubMed  Google Scholar 

  • Duff E, Baile CA (2003) Ciliary neurotrophic factor: a role in obesity? Nutr Rev 61:423–426

    PubMed  Google Scholar 

  • Elmquist JK, Maratos-Flier E, Saper CB, Flier JS (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1:445–450

    CAS  PubMed  Google Scholar 

  • Elson GC, Lelievre E, Guillet C, Chevalier S, Plun-Favreau H, Froger J, Suard I, de Coignac AB, Delneste Y, Bonnefoy JY, Gauchat JF, Gascan H (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 3:867–872

    CAS  PubMed  Google Scholar 

  • Escartin C, Pierre K, Colin A, Brouillet E, Delzescaux T, Guillermier M, Dhenain M, Deglon N, Hantraye P, Pellerin L, Bonvento G (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 27:7094–7104

    CAS  PubMed  Google Scholar 

  • Ettinger MP, Littlejohn TW, Schwartz SL, Weiss SR, McIlwain HH, Heymsfield SB, Bray GA, Roberts WG, Heyman ER, Stambler N, Heshka S, Vicary C, Guler HP (2003) Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289:1826–1832

    CAS  PubMed  Google Scholar 

  • Febbraio MA (2007) gp130 receptor ligands as potential therapeutic targets for obesity. J Clin Invest 117:841–849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fonseca VA, Kulkarni KD (2008) Management of type 2 diabetes: oral agents, insulin, and injectables. J Am Diet Assoc 108:S29–S33

    CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    CAS  PubMed  Google Scholar 

  • Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH, Cortese R, Ciliberto G, Laufer R (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci USA 94:6456–6461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC (2005) Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8:1289–1291

    CAS  PubMed  Google Scholar 

  • Hegyi K, Fulop K, Kovacs K, Toth S, Falus A (2004) Leptin-induced signal transduction pathways. Cell Biol Int 28:159–169

    CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM, DiStefano PS (1994) Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell 76:493–504

    CAS  PubMed  Google Scholar 

  • Henderson JT, Seniuk NA, Richardson PM, Gauldie J, Roder JC (1994) Systemic administration of ciliary neurotrophic factor induces cachexia in rodents. J Clin Invest 93:2632–2638

    PubMed Central  CAS  PubMed  Google Scholar 

  • Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10:734–738

    CAS  PubMed  Google Scholar 

  • Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ et al (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69:1121–1132

    CAS  PubMed  Google Scholar 

  • James W, Jackson-Leach R, Mhurdu C, Kalamara E, Shayeghi M, Rigby N, Nishida C, Rodgers A, Ezzati M, Lopez A, Rodgers A, Murray C (2003) Overweight and obesity. In: Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. WHO, Geneva

    Google Scholar 

  • Janoschek R, Plum L, Koch L, Munzberg H, Diano S, Shanabrough M, Muller W, Horvath TL, Bruning JC (2006) gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor. Proc Natl Acad Sci USA 103:10707–10712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kallen KJ, Grotzinger J, Lelievre E, Vollmer P, Aasland D, Renne C, Mullberg J, Myer zum Buschenfelde KH, Gascan H, Rose-John S (1999) Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6. J Biol Chem 274:11859–11867

    CAS  PubMed  Google Scholar 

  • Kalra SP, Xu B, Dube MG, Moldawer LL, Martin D, Kalra PS (1998) Leptin and ciliary neurotropic factor (CNTF) inhibit fasting-induced suppression of luteinizing hormone release in rats: role of neuropeptide Y. Neurosci Lett 240:45–49

    CAS  PubMed  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly JF, Elias CF, Lee CE, Ahima RS, Seeley RJ, Bjorbaek C, Oka T, Saper CB, Flier JS, Elmquist JK (2004) Ciliary neurotrophic factor and leptin induce distinct patterns of immediate early gene expression in the brain. Diabetes 53:911–920

    CAS  PubMed  Google Scholar 

  • Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    CAS  PubMed  Google Scholar 

  • Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ (2001) Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 98:4652–4657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    CAS  PubMed  Google Scholar 

  • Liu QS, Gao M, Zhu SY, Li SJ, Zhang L, Wang QJ, Du GH (2007a) The novel mechanism of recombinant human ciliary neurotrophic factor on the anti-diabetes activity. Basic Clin Pharmacol Toxicol 101:78–84

    CAS  PubMed  Google Scholar 

  • Liu QS, Wang QJ, Du GH, Zhu SY, Gao M, Zhang L, Zhu JM, Cao JF (2007b) Recombinant human ciliary neurotrophic factor reduces weight partly by regulating nuclear respiratory factor 1 and mitochondrial transcription factor A. Eur J Pharmacol 563:77–82

    CAS  PubMed  Google Scholar 

  • MacLennan AJ, Gaskin AA, Lado DC (1994) CNTF receptor alpha mRNA expression in rodent cell lines and developing rat. Brain Res Mol Brain Res 25:251–256

    CAS  PubMed  Google Scholar 

  • Maroni P, Bendinelli P, Piccoletti R (2005) Intracellular signal transduction pathways induced by leptin in C2C12 cells. Cell Biol Int 29:542–550

    CAS  PubMed  Google Scholar 

  • Martin D, Merkel E, Tucker KK, McManaman JL, Albert D, Relton J, Russell DA (1996) Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle. Am J Physiol 271:R1422–R1428

    CAS  PubMed  Google Scholar 

  • Mascie-Taylor CG, Karim E (2003) The burden of chronic disease. Science 302:1921–1922

    PubMed  Google Scholar 

  • Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G, Thoenen H (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:27–32

    CAS  PubMed  Google Scholar 

  • Matthys P, Billiau A (1997) Cytokines and cachexia. Nutrition 13:763–770

    CAS  PubMed  Google Scholar 

  • Miller RG, Petajan JH, Bryan WW, Armon C, Barohn RJ, Goodpasture JC, Hoagland RJ, Parry GJ, Ross MA, Stromatt SC (1996) A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group (ACTS). Ann Neurol 39:256–260

    CAS  PubMed  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    CAS  PubMed  Google Scholar 

  • Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    CAS  PubMed  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    CAS  PubMed  Google Scholar 

  • Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743

    CAS  PubMed  Google Scholar 

  • Munzberg H, Tafel J, Busing B, Hinney A, Ziegler A, Mayer H, Siegfried W, Matthaei S, Greten H, Hebebrand J, Hamann A (1998) Screening for variability in the ciliary neurotrophic factor (CNTF) gene: no evidence for association with human obesity. Exp Clin Endocrinol Diabetes 106:108–112

    CAS  PubMed  Google Scholar 

  • Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA (1997) Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46:1360–1363

    CAS  PubMed  Google Scholar 

  • Nesbitt JE, Fuentes NL, Fuller GM (1993) Ciliary neurotrophic factor regulates fibrinogen gene expression in hepatocytes by binding to the interleukin-6 receptor. Biochem Biophys Res Commun 190:544–550

    CAS  PubMed  Google Scholar 

  • Niswender KD, Baskin DG, Schwartz MW (2004) Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol Metab 15:362–369

    CAS  PubMed  Google Scholar 

  • O’Dell SD, Syddall HE, Sayer AA, Cooper C, Fall CH, Dennison EM, Phillips DI, Gaunt TR, Briggs PJ, Day IN (2002) Null mutation in human ciliary neurotrophic factor gene confers higher body mass index in males. Eur J Hum Genet 10:749–752

    PubMed  Google Scholar 

  • Obici S, Feng Z, Arduini A, Conti R, Rossetti L (2003) Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 9:756–761

    CAS  PubMed  Google Scholar 

  • Ott V, Fasshauer M, Dalski A, Klein HH, Klein J (2002) Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. J Endocrinol 173:R1–R8

    CAS  PubMed  Google Scholar 

  • Ott V, Fasshauer M, Meier B, Dalski A, Kraus D, Gettys TW, Perwitz N, Klein J (2004) Ciliary neurotrophic factor influences endocrine adipocyte function: inhibition of leptin via PI 3-kinase. Mol Cell Endocrinol 224:21–27

    CAS  PubMed  Google Scholar 

  • Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369:71–77

    CAS  PubMed  Google Scholar 

  • Penfornis A, Borot S, Raccah D (2008) Therapeutic approach of type 2 diabetes mellitus with GLP-1 based therapies. Diabetes Metab 34(Suppl 2):S78–S90

    CAS  PubMed  Google Scholar 

  • Peralta S, Carrascosa JM, Gallardo N, Ros M, Arribas C (2002) Ageing increases SOCS-3 expression in rat hypothalamus: effects of food restriction. Biochem Biophys Res Commun 296:425–428

    CAS  PubMed  Google Scholar 

  • Plun-Favreau H, Elson G, Chabbert M, Froger J, deLapeyriere O, Lelievre E, Guillet C, Hermann J, Gauchat JF, Gascan H, Chevalier S (2001) The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J 20:1692–1703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pu S, Dhillon H, Moldawer LL, Kalra PS, Kalra SP (2000) Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor. J Neuroendocrinol 12:827–832

    CAS  PubMed  Google Scholar 

  • Reiness CG, Seppa MJ, Dion DM, Sweeney S, Foster DN, Nishi R (2001) Chick ciliary neurotrophic factor is secreted via a nonclassical pathway. Mol Cell Neurosci 17:931–944

    CAS  PubMed  Google Scholar 

  • Roth SM, Metter EJ, Lee MR, Hurley BF, Ferrell RE (2003) C174T polymorphism in the CNTF receptor gene is associated with fat-free mass in men and women. J Appl Physiol 95:1425–1430

    CAS  PubMed  Google Scholar 

  • Rousseau F, Chevalier S, Guillet C, Ravon E, Diveu C, Froger J, Barbier F, Grimaud L, Gascan H (2008) Ciliary neurotrophic factor, cardiotrophin-like cytokine and neuropoietin share a conserved binding site on the ciliary neurotrophic factor receptor alpha chain. J Biol Chem 283(44):30341–30350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubartelli A, Cozzolino F, Talio M, Sitia R (1990) A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J 9:1503–1510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saggio I, Gloaguen I, Poiana G, Laufer R (1995) CNTF variants with increased biological potency and receptor selectivity define a functional site of receptor interaction. EMBO J 14:3045–3054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sahu A, Kalra PS, Kalra SP (1988) Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 9:83–86

    CAS  PubMed  Google Scholar 

  • Schuster B, Kovaleva M, Sun Y, Regenhard P, Matthews V, Grotzinger J, Rose-John S, Kallen KJ (2003) Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an alpha-receptor for CTNF. J Biol Chem 278:9528–9535

    CAS  PubMed  Google Scholar 

  • Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593

    CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ (2000) The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv 74:265–272

    CAS  PubMed  Google Scholar 

  • Sleeman MW, Garcia K, Liu R, Murray JD, Malinova L, Moncrieffe M, Yancopoulos GD, Wiegand SJ (2003) Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc Natl Acad Sci USA 100:14297–14302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinberg GR, Rush JW, Dyck DJ (2003) AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284:E648–E654

    CAS  PubMed  Google Scholar 

  • Steinberg GR, Watt MJ, Fam BC, Proietto J, Andrikopoulos S, Allen AM, Febbraio MA, Kemp BE (2006) Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice. Endocrinology 147:3906–3914

    CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    CAS  PubMed  Google Scholar 

  • Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR Jr (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99:385–390

    PubMed Central  PubMed  Google Scholar 

  • Vergara C, Ramirez B (2004) CNTF, a pleiotropic cytokine: emphasis on its myotrophic role. Brain Res Brain Res Rev 47:161–173

    CAS  PubMed  Google Scholar 

  • Vogel G (2005) Neuroscience. Does brain cell growth drive weight loss? Science 310:602

    CAS  PubMed  Google Scholar 

  • Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR (2006a) CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12:541–548

    CAS  PubMed  Google Scholar 

  • Watt MJ, Hevener A, Lancaster GI, Febbraio MA (2006b) Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147:2077–2085

    CAS  PubMed  Google Scholar 

  • WHO (2006) http://www.who.int/mediacentre/factsheets/fs311/en/index.html. World Health Organisation, Geneva

  • Xu B, Dube MG, Kalra PS, Farmerie WG, Kaibara A, Moldawer LL, Martin D, Kalra SP (1998) Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology 139:466–473

    CAS  PubMed  Google Scholar 

  • Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47–50

    CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  • Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, Moritz RL, Cary D, Richardson R, Hausmann G, Kile BJ, Kent SB, Alexander WS, Metcalf D, Hilton DJ, Nicola NA, Baca M (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 96:2071–2076

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ziotopoulou M, Erani DM, Hileman SM, Bjorbaek C, Mantzoros CS (2000) Unlike leptin, ciliary neurotrophic factor does not reverse the starvation-induced changes of serum corticosterone and hypothalamic neuropeptide levels but induces expression of hypothalamic inhibitors of leptin signaling. Diabetes 49:1890–1896

    CAS  PubMed  Google Scholar 

  • Zvonic S, Cornelius P, Stewart WC, Mynatt RL, Stephens JM (2003) The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes. J Biol Chem 278:2228–2235

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Hi Le for assistance in producing this manuscript, the support of the National Health and Medical Research Council (NHMRC), the Australian Research Council and the Diabetes Australia Research Trust. VBM is supported in part by a Baker IDI Heart and Diabetes Institute Early Career Scientist Grant. MAF is supported by a Principal Research Fellowship from the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Febbraio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allen, T.L., Matthews, V.B., Febbraio, M.A. (2011). Overcoming Insulin Resistance with Ciliary Neurotrophic Factor. In: Schwanstecher, M. (eds) Diabetes - Perspectives in Drug Therapy. Handbook of Experimental Pharmacology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17214-4_9

Download citation

Publish with us

Policies and ethics