Skip to main content

Floating Skeleton Concept

  • Chapter
  • First Online:
Biomechanics for Life

Abstract

The fetal skeleton floats, entirely immersed in fluid contained inside of a flexible shell. As the fetus develops, the periosteum tightens around the bones, and the joints are covered by capsules filled with synovial fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notochord: Greek noton back  +  chorde cord: a longitudinal flexible rod of cells that in embryos of the higher vertebrates forms the supporting axis of the body

  2. 2.

    1 Da  =  1 g/mol

  3. 3.

    “Atomic Weights and Isotopic Compositions for All Elements,” National Institute of Standards and Technology (NIST), 2007

  4. 4.

    NIH Grant R44HD057492: Manufacturing technology for skin integrated composite prosthetic pylon

  5. 5.

    Institutional Animal Care and Use Committee

  6. 6.

    Utah Medical Products, Inc., Midvale, UT 84047

References

  • Alexander R (1987) Bending of cylindrical animals with helical fibres in their skin or cuticle. J Theor Biol 124:97–110

    Article  Google Scholar 

  • Alexander RM (1968) Animal mechanics. Sidgwick & Jackson, London

    Google Scholar 

  • Anderson AE, Ellis BJ et al (2008) Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng 130(5):051008

    Article  PubMed  Google Scholar 

  • Barra JG, Crottogini AJ et al (2004) Contribution of myocardium hydraulic skeleton to left ventricular wall interaction and synergy in dogs. Am J Physiol Heart Circ Physiol 287(2):H896–H904

    Article  PubMed  CAS  Google Scholar 

  • Bartelink DL (1957) The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. J Bone Joint Surg Br 39-B(4):718–725

    PubMed  CAS  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Benjamin M, McGonagle D (2001) The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 199(Pt 5):503–526

    Article  PubMed  CAS  Google Scholar 

  • Benjamin M, McGonagle D (2009) Entheses: tendon and ligament attachment sites. Scand J Med Sci Sports 19(4):520–527

    Article  PubMed  CAS  Google Scholar 

  • Borelli GA (1680) De Motu Animalium. Princeton University Press, Princeton

    Google Scholar 

  • Brunarski D (1984) Clinical trials of spinal manipulation: a critical appraisal and review of the literature. J Manipulative Physiol Ther 7(4):243–249

    PubMed  CAS  Google Scholar 

  • Casey TM (1991) Energetics of caterpillar locomotion: biomechanical constraints of a hydraulic skeleton. Science 252(5002):112–114

    Article  PubMed  CAS  Google Scholar 

  • Cramer G, Budgell B et al (2006) “Basic science research related to chiropractic spinal adjusting: the state of the art and recommendations revisited.” J Manipulative Physiol Ther 29(9): 726–761

    Google Scholar 

  • Dankin K, Zhao Y et al (2005) LAMP, a new imaging assay of gap junctional communication unveils that Ca2+ influx inhibits cell coupling. Nat Methods 2:55–62

    Article  Google Scholar 

  • Elftman H (1938) The measurement of the external force in walking. Science 88:152–153

    Article  PubMed  CAS  Google Scholar 

  • Falkovich G, Weinberg A et al (2005) Surface tension: floater clustering in a standing wave. Nature 435(7045):1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Fick JM, Thambyah A et al (2010) Articular cartilage compression: how microstructural response influences pore pressure in relation to matrix health. Connect Tissue Res 51(2):132–149

    Article  PubMed  Google Scholar 

  • Foolen J, van Donkelaar C et al (2008) Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. J Orthop Res 26(9):1263–1268

    Article  PubMed  Google Scholar 

  • Gardner TN, Evans M, Simpson H, Kenwright J (1998) Force-displacement behaviour of biological tissue during distraction osteogenesis. Med Eng Phys 20(9):708–715

    Article  PubMed  CAS  Google Scholar 

  • Granata KP, Marras WS et al (1997) Biomechanical assessment of lifting dynamics, muscle activity and spinal loads while using three different styles of lifting belt. Clin Biomech (Bristol Avon) 12(2):107–115

    Article  Google Scholar 

  • Gray H, Lewis WH (1918) Anatomy of the human body. Lea & Febiger, Philadelphia, Bartleby.com, 2000. www.bartleby.com/1-7/

  • Greene GW, Zappone B, Zhao B, Soderman O, Topgaard D, Rata G, Israelachvili JN (2008) Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication. Biomaterials. 29(33):4455–4462

    Article  PubMed  CAS  Google Scholar 

  • Grimston SK, Brodt MD et al (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 23(6):879–886

    Article  PubMed  Google Scholar 

  • Grotberg J, Jensen O (2004) Biofluid mechanics in flexible tube. Annu Rev Fluid Mech 36:121–147

    Article  Google Scholar 

  • Hinshaw WS, Bottomley PA et al (1977) Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270(5639):722–723

    Article  PubMed  CAS  Google Scholar 

  • Hodge WA, Fijan RS et al (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83(9):2879–2883

    Article  PubMed  CAS  Google Scholar 

  • Hopkins JT, Ingersoll CD et al (2001) Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc 33(1):123–126

    PubMed  CAS  Google Scholar 

  • Jordan T (2009) Swedenborg’s influence on Sutherland’s ‘Primary Respiratory Mechanism’ model in cranial osteopathy. International Journal of Osteopathic Medicine 12(3): 100–105

    Article  Google Scholar 

  • Knight AD, Levick JR (1982) Pressure-volume relationships above and below atmospheric pressure in the synovial cavity of the rabbit knee. J Physiol 328:403–420

    PubMed  CAS  Google Scholar 

  • Knight AD, Levick JR (1985) Effect of fluid pressure on the hydraulic conductance of interstitium and fenestrated endothelium in the rabbit knee. J Physiol 360:311–332

    PubMed  CAS  Google Scholar 

  • Knott M, Voss DE (1968) Proprioceptive neuromuscular facilitation: patterns and techniques. Hoeber Medical Division, New York

    Google Scholar 

  • Koehl M, Quillin K et al (2000) Mechanical design of fiber-wound hydraulic skeletons: the stiffening and straightening of embryonic notochords. Am Zool 40:28–41

    Article  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Lee HD, Chung SG (2008) Real-time pressure monitoring of intraarticular hydraulic distension for painful stiff shoulders. J Orthop Res 26(7):965–970

    Article  PubMed  Google Scholar 

  • Leroy Y, Cathey S, et al (2009) Mucolipidosis II. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews: http://www.ncbi.nlm.nih.gov/books/NBK1828/

  • Levick JR (1979) An investigation into the validity of subatmospheric pressure recordings from synovial fluid and their dependence on joint angle. J Physiol 289:55–67

    PubMed  CAS  Google Scholar 

  • Li G, Wan L et al (2008) Determination of real-time in-vivo cartilage contact deformation in the ankle joint. J Biomech 41(1):128–136

    Article  PubMed  CAS  Google Scholar 

  • Lipowitz AJ (1985) Synovial fluid. In: Newton C, Nunamaker D (eds) Textbook of small animal orthopaedics. Lippincott Williams & Wilkins, Ithaca

    Google Scholar 

  • Lunkenheimer PP, Ising H (1974) The hydraulic skeleton of the heart. A working hypothesis on the mechanism of ventricle unfolding. Zentralbl Veterinärmed A 21(5):365–378

    Article  PubMed  CAS  Google Scholar 

  • McDonald JN, Levick JR (1995) Effect of intra-articular hyaluronan on pressure-flow relation across synovium in anaesthetized rabbits. J Physiol 485(Pt 1):179–193

    PubMed  CAS  Google Scholar 

  • Michael JA, Sircar S (2010) Fundamentals of medical physiology. Thieme, New York

    Google Scholar 

  • Milz S, Boszczyk BM et al (2005) The enthesis. Physiological morphology, molecular composition and pathoanatomical alterations. Orthopade 34(6):526–532

    Article  PubMed  CAS  Google Scholar 

  • Murphy B, Taylor HH et al (2010) The effect of spinal manipulation on the efficacy of a rehabilitation protocol for patients with chronic neck pain: a pilot study. J Manipulative Physiol Ther 33(3):168–177

    Article  PubMed  Google Scholar 

  • Nordin M, Kahanovitz N et al (1987) Normal trunk muscle strength and endurance in women and the effect of exercises and electrical stimulation. Part 1: normal endurance and trunk muscle strength in 101 women. Spine 12(2):105–111

    Article  PubMed  CAS  Google Scholar 

  • Novelline RA, Squire LF (1997) Squire’s fundamentals of radiology. Harvard University Press, Cambridge

    Google Scholar 

  • Palmieri-Smith RM, Kreinbrink J et al (2007) Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med 35(8):1269–1275

    Article  PubMed  Google Scholar 

  • Palmer DD (1910) The Chiropractor’s Adjuster: A Textbook of the Science, Art, and Philosophy of Chiropractic for Students and Practitioners. Portland, OR, Portland Printing House

    Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. Slack, Inc., Thorofare

    Google Scholar 

  • Pitkin M (1991) A new biomechanical technique for increasing of joint flexibility with a focus on back pain prevention. In: Proceedings of the XIII international congress of biomechanics, the University of Western Australia, Australia, 9–13 Dec 1991, pp 243–244

    Google Scholar 

  • Pitkin M (1993) Floating skeleton concept to explain causes of injuries in spine and success of any therapeutic procedure. In: Proceedings of the XIV international conference ISB, Paris, France, 1993, pp 1052–1053

    Google Scholar 

  • Pitkin MR (2010) Biomechanics of lower limb prosthetics. Springer, New York

    Google Scholar 

  • Rawls ES (1966) A handbook of yoga for modern living. Parker Publication Co., West Nyack

    Google Scholar 

  • Rufai A, Ralphs JR et al (1996) Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat 189(Pt 1):185–191

    PubMed  Google Scholar 

  • Sack L, Cowan PD et al (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26(26):1343–1356

    Article  Google Scholar 

  • Schneidman E, Bialek W et al (2003) Synergy, redundancy, and independence in population codes. J Neurosci 23(37):11539–11553

    PubMed  CAS  Google Scholar 

  • Simon SR (2004) Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 37(12):1869–1880

    Article  PubMed  Google Scholar 

  • Spray D (2005) Illuminating gap junctions. Nat Methods 2:12–14

    Article  PubMed  CAS  Google Scholar 

  • Squier CA, Ghoneim S et al (1990) Ultrastructure of the periosteum from membrane bone. J Anat 171:233–239

    PubMed  CAS  Google Scholar 

  • Sutherland W (1998) Contributions of thought: collected writings of William Garner Sutherland, DO. 2nd ed. Portland OR, Rudra Press

    Google Scholar 

  • Swedenborg E (1882) The brain, considered anatomically, physiologically and philosophically. London, James Speirs

    Google Scholar 

  • Thompson JW, Sorvig K (2008) Sustainable landscape construction: a guide to green building outdoors. Island Press, Washington

    Google Scholar 

  • Travell JG, Simons DG (1983) Myofascial pain and dysfunction: the trigger point manual. Williams & Wilkins, Baltimore

    Google Scholar 

  • Tyree MT, Frank EW (1992) The hydraulic architecture of trees and other woody plants. New Phytol 119(3):345–360

    Article  Google Scholar 

  • Upledger JE, Vredevoogd JD (1983) Craniosacral therapy. Eastland Press, Chicago

    Google Scholar 

  • van Dijk JH (1979) A theory on the control of arbitrary movements. Biol Cybern 32(4):187–199

    Article  PubMed  CAS  Google Scholar 

  • van Valburg AA, van Roermund PM, Marijnissen AC, Wenting MJ, Verbout AJ, Lafeber FP, Bijlsma JW (2000) Joint distraction in treatment of osteoarthritis (II): effects on cartilage in a canine model. Osteoarthritis Cartilage 8(1):1–8

    Article  PubMed  Google Scholar 

  • Winter DA (1979) Biomechanics of human movement. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Winter DA (1991) The biomechanics and motor control of human gait: normal, elderly and pathological. University of Waterloo Press, Ontario

    Google Scholar 

  • Yen CH, Leung HB, Tse PY (2009) Effects of hip joint position and intra-capsular volume on hip joint intra-capsular pressure: a human cadaveric model. J Orthop Surg Res 4:8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Pitkin Ph.D., D.Sc. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitkin, M.R. (2011). Floating Skeleton Concept. In: Biomechanics for Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17177-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17177-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17176-5

  • Online ISBN: 978-3-642-17177-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics