Skip to main content

Spatial Pyramidal Clustering Based on a Tessellation

  • Conference paper

Abstract

Indexed hierarchies and indexed clustering pyramids are based on an underlying order for which each cluster is connected. In this paper our aim is to extend standard pyramids and their underlying one-to-one correspondence with Robinsonian dissimilarities to spatial pyramids where each cluster is “compatible” with a spatial network given by a kind of tessellation called “m/k-network”. We focus on convex spatial pyramids and we show that they are in one-to-one correspondence with a new kind of dissimilarities. We give a building algorithm for convex spatial pyramids illustrated by an example. We show that spatial pyramids can converge towards geometrical pyramids. We indicate finally that spatial pyramids can give better results than Kohonen mappings and can produce a geometrical representation of conceptual lattices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aude, J. C. (1999). Analyse de Génomes Microbiens, Apports de la Classification Pyramidal, Ph.D Thesis, Université Paris Dauphine, Paris.

    Google Scholar 

  2. Benzecri, J. P. (1973). l’Analyse des Données: la Taxonomie, Vol. 1, Dunod, Paris.

    Google Scholar 

  3. Bertrand, P., and Janowitz, M. F. (2002). “Pyramids and Weak Hierarchies in the Ordinal Model for Clustering,” Discrete Applied Mathematics, 122, 55–81.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, P. (1986). Etude de la Représentation Pyramidale, Ph.D Thesis, Université Paris Dauphine, Paris.

    Google Scholar 

  5. Bertrand, P. (1995). “Structural Properties of Pyramidal Clustering,” DIMACS Series on Theoretical Computer Science, 19, pp. 35–53.

    MathSciNet  Google Scholar 

  6. Billard L., and Diday, E. (2003). “From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis,” Journal of the American Statistical Association, 98, 470–487.

    Article  MathSciNet  Google Scholar 

  7. Bock, H.-H., and Diday, E. (2000). Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, Springer, Berlin-Heidelberg.

    Google Scholar 

  8. Brito, P., and Diday, E. (1989). “Pyramidal Representation of Symbolic Objects,” in Knowledge, Data and Computer-Assisted Decisions: Proc. of the NATO advanced Workshop on Data, Expert Knowledge and Decision, eds. M. Schader, W. Gaul.

    Google Scholar 

  9. Brito, P. (1991). Analyse de Données Symboliques et Pyramides d’héritage, Ph.D Thesis, Université Paris Dauphine, Paris.

    Google Scholar 

  10. Diday, E. (1984). “Une Représentation Visuelle des Classes Empiétantes: Les Pyramides,” Rapport de Recherche INRIA, Rocquencourt, France, 291.

    Google Scholar 

  11. Diday, E. (1986). “Orders and Overlapping Clusters in Pyramids,” in Multidimensional Data Analysis, eds. J. De Leeuw et al., Leiden: DSWO Press, pp. 201–234.

    Google Scholar 

  12. Diday, E. (1987). “Introduction a l’Approche Symbolique en Analyse des Données,” in Actes des Journées Symboliques-Numériques pour l’Apprentissage de Connaissances à Partir d’Observations, eds. E. Diday and Y. Kodratoff, Université Paris-IX Dauphine, France.

    Google Scholar 

  13. Durand, C, and Fichet, B. (1988). “One-to-One Correspondance in Pyramidal Representation,” in Classification and Related Methods of Data Analysis, ed. H.-H. Bock, Elsevier Science Publishers.

    Google Scholar 

  14. Janowitz, M. F. (1978). “An Order Theoretic Model for Cluster Analysis,” SIAM Journal of Applied Mathematics, 34, 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, S. C. (1967). “Hierarchical Clustering Schemes,” Psychometrika, 32, 241–254.

    Article  Google Scholar 

  16. Rodriguez, R. O. (2000). Classification et Modèles Linéaires en Analyse des Données Symboliques, Ph.D Thesis, Université Paris Dauphine, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diday, E. (2004). Spatial Pyramidal Clustering Based on a Tessellation. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds) Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17103-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17103-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22014-5

  • Online ISBN: 978-3-642-17103-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics