Skip to main content

Relations Between Designs for Prediction and Estimation in Random Fields: An Illustrative Case

  • Conference paper
  • First Online:
Advances and Challenges in Space-time Modelling of Natural Events

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 207))

Abstract

Two approaches are considered to design experiments for a correlated random field when the objective is to obtain precise predictions over the whole experimental domain. Both take the uncertainty of the estimated parameters of the correlation structure of the random field into account. The first one corresponds to a compound D-optimality criterion for both the trend and covariance parameters. The second one relies on an approximation of the mean squared prediction error already proposed in the literature. It is conjectured, and shown on a paradigmatic example, that for some particular settings both approaches yield similar optimal designs, thereby revealing a sort of accordance between the two criteria for random fields. However, our example also shows that a strict equivalence theorem as in the uncorrelated case is not achievable. As a side issue we cast doubts on the ubiquity of equidistant space-filling designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abt, M.: Estimating the prediction mean squared error in gaussian stochastic processes with exponential correlation structure. Scand. J. Stat. 26(4), 563–578 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi Antognini, A., Zagoraiou, M.: Exact optimal designs for computer experiments via kriging metamodelling. J. Stat. Plan. Infer. 140(9), 2607–2617 (2010) http://dx.doi.org/10.1016/j.jspi.2010.03.027

    Google Scholar 

  3. Bursztyn, D., Steinberg, D.: Comparison of designs for computer experiments. J. Stat. Plan. Infer. 136(3), 1103–1119 (2006) http://dx.doi.org/10.1016/j.jspi.2004.08.007

    Google Scholar 

  4. Cressie, N.A.C.: Statistics for Spatial Data (Wiley Series in Probability and Statistics), rev sub Edition. Wiley-Interscience, New York (1993)

    Google Scholar 

  5. Dette, H., Kunert, J., Pepelyshev, A.: Exact optimal designs for weighted least squares analysis with correlated errors. Stat. Sinica. 18 (1), 135–154 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Fedorov, V., Müller, W.: Optimum design for correlated processes via eigenfunction expansions. In: López-Fidalgo, J., Rodríguez-Díaz, J., Torsney, B. (Eds.), mODa’8 – Advances in Model–Oriented Design and Analysis, Proceedings of the 8th Int. Workshop, Almagro (Spain). Physica Verlag, Heidelberg, 57–66 (2007)

    Google Scholar 

  7. Ginsbourger, D., Dupuy, D., Badea, A., Carraro, L., Roustant, O.: A note on the choice and the estimation of kriging models for the analysis of deterministic computer experiments. Appl. Stoch. Model. Bus. 25(2), 115–131 (2009) http://dx.doi.org/10.1002/asmb.741

  8. Harman, R., Stulajter, F.: Optimal prediction designs in finite discrete spectrum linear regression models. Metrika, 72, 281-294 (2009) http://dx.doi.org/10.1007/s00184-009-0253-4

  9. Harville, D.A., Jeske, D.R.: Mean squared error of estimation or prediction under a general linear model. J. Am. Stat. Assoc. 87(419), 724–731 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Canadian. J. Math. 12, 363–366 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kislák, J., Stehlík, M.: Equidistant and D-optimal designs for parameters of Ornstein-Uhlenbeck process. Stat. Probabil. Lett. 78(12), 1388–1396 (2008)

    Article  Google Scholar 

  12. Müller, W., Pázman, A.: Measures for designs in experiments with correlated errors. Biometrika. 90(2), 423–434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, W.G.: Collecting Spatial Data, 3rd Edition. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  14. Müller, W. G., Stehlík, M.: Issues in the optimal design of computer simulation experiments. Appl. Stoch. Model. Bus. 25(2), 163–177 (2009)

    Article  MATH  Google Scholar 

  15. Müller, W. G., Stehlík, M.: Compound optimal spatial designs. Environmetrics 21(3-4), 354–364 (2009) http://dx.doi.org/10.1002/env.1009

    Google Scholar 

  16. Pronzato, L.: Optimal experimental design and some related control problems. Automatica 44(2), 303–325 (2008)

    Article  MathSciNet  Google Scholar 

  17. Pronzato, L.: One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238 (2010) http://dx.doi.org/10.1007/s00184-008-0227-y

    Google Scholar 

  18. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. (Springer Series in Statistics), 1st Edition. Springer (1999)

    Google Scholar 

  20. Torsney, B., Martín-Martín, R.: Multiplicative algorithms for computing optimum designs. J. Stat. Plan. Infer. 139(12), 3947–3961 (2009) http://dx.doi.org/10.1016/j.jspi.2009.05.007

    Google Scholar 

  21. Ying, Z.: Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process. J. Multivariate Anal. 36, 280–296 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zagoraiou, M., Antognini, A.B.: Optimal designs for parameter estimation of the Ornstein-Uhlenbeck process. Appl. Stoch. Model. Bus online (5), 583–600 (2009) http://dx.doi.org/10.1002/asmb.749

  23. Zhu, Z., Stein, M.: Spatial sampling design for parameter estimation of the covariance function. J. Stat. Plan. Infer. 134(2), 583–603 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, Z., Stein, M.L.: Spatial sampling design for prediction with estimated parameters. J Agr Biol Envir St 11(1), 24–44 (2006)

    Article  Google Scholar 

  25. Zhu, Z., Zhang, H.: Spatial sampling design under the infill asymptotic framework. Environmetrics 17(4), 323–337 (2006)

    Article  MathSciNet  Google Scholar 

  26. Zimmerman, D.L.: Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics. 17(6), 635–652 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The article was mainly written during the first author’s research stay at the University of Nice-Sophia Antipolis and he wants to acknowledge its generous support. This work was also partially supported by a PHC Amadeus/OEAD Amadée grant FR11/2010. We are also grateful to an attentive referee for pointing out several omissions and typos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, W.G., Pronzato, L., Waldl, H. (2012). Relations Between Designs for Prediction and Estimation in Random Fields: An Illustrative Case. In: Porcu, E., Montero, J., Schlather, M. (eds) Advances and Challenges in Space-time Modelling of Natural Events. Lecture Notes in Statistics(), vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17086-7_6

Download citation

Publish with us

Policies and ethics