Skip to main content

Responsive Action Generation by Physically-Based Motion Retrieval and Adaptation

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

Abstract

Responsive motion generation of avatars who have physical interactions with their environment is a key issue in VR and video games. We present a performance-driven avatar control interface with physically-based motion retrieval. When the interaction between the user-controlled avatar and its environment is going to happen, the avatar has to select the motion clip that satisfies both kinematic and dynamic constraints. A two-steps process is proposed. Firstly, it selects a set of candidate motions according to the performance of the user. Secondly, these candidate motions are further ranked according to their capability to satisfy dynamic constraints such as balance and comfort. The motion associated with the highest score is finally adapted in order to accurately satisfy the kinematic constraints imposed by the virtual world. The experimental results show that it can efficiently control the avatar with an intuitive performance-based interface based on few motion sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chai, J., Hodgins, J.: Performance animation from low-dimensional control signals. ACM Trans. on Graph. 24(3), 686–696 (2005)

    Article  Google Scholar 

  2. Liang, X., Li, Q., Zhang, X., Zhang, S., Geng, W.: Performance-driven motion choreographing with accelerometers. Computer Animation and Virtual Worlds 20(2-3), 89–99 (2009)

    Article  Google Scholar 

  3. Shiratori, T., Hodgins, J.: Accelerometer-based user interfaces for the control of a physically simulated character. ACM Trans. on Graph. 27(5), 1–9 (2008)

    Article  Google Scholar 

  4. Liu, F., Zhuang, Y., Wu, F., Pan, Y.: 3d motion retrieval with motion index tree. Computer Vision and Image Understanding 92(2-3), 265–284 (2003)

    Article  Google Scholar 

  5. Keogh, E., Palpanas, T., Zordan, V., Gunopulos, D., Cardle, M.: Indexing large human-motion databases. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 780–791 (2004)

    Google Scholar 

  6. Muller, M., Roder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. on Graph. 24(3), 677–685 (2005)

    Article  Google Scholar 

  7. Slyper, R., Hodgins, J.: Action capture with accelerometers. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–199 (2008)

    Google Scholar 

  8. Liang, X., Zhang, S., Li, Q., Pronost, N., Geng, W., Multon, F.: Intuitive motion retrieval with motion sensors. In: Proceedings of Computer Graphics International, pp. 64–71 (2008)

    Google Scholar 

  9. Hodgins, J., Wooten, W., Brogan, D., O’Brien, J.: Animating human athletics. In: Proceedings of ACM SIGGRAPH 1995, pp. 71–78 (1995)

    Google Scholar 

  10. Hodgins, J., Pollard, N.: Adapting simulated behaviors for new characters. In: Proceedings of ACM SIGGRAPH 1997, pp. 153–162 (1997)

    Google Scholar 

  11. Wooten, W.L., Hodgins, J.: Animation of human diving. Computer Graphics Forum 15, 3–13 (1996)

    Article  Google Scholar 

  12. Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. on Graph. 26(3), 105 (2007)

    Article  Google Scholar 

  13. Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. 26(3), 107 (2007)

    Article  Google Scholar 

  14. Zordan, V., Hodgins, J.: Motion capture-driven simulations that hit and react. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 89–96 (2002)

    Google Scholar 

  15. Tak, S., Song, O.Y., Ko, H.S.: Motion balance filtering. Computer Graphics Forum 19(3), 437–446 (2000)

    Article  Google Scholar 

  16. Yamane, K., Nakamura, Y.: Dynamic filters - concept and implementations of online motion generator for human figures. IEEE Trans. on Robotics and Automation 19(3), 421–432 (2003)

    Article  Google Scholar 

  17. Tak, S., Ko, H.: A physically-based motion retargeting filter. ACM Trans. on Graph. 24(1), 98–117 (2005)

    Article  Google Scholar 

  18. Tak, S., Song, O.Y., Ko, H.S.: Spacetime sweeping: a interactive dynamic constraints solver. In: Proceedings of IEEE Computer Animation, pp. 261–270 (2002)

    Google Scholar 

  19. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of ACM SIGGRAPH, pp. 159–168 (1988)

    Google Scholar 

  20. Sofonova, A., Hodgins, J., Pollard, N.: Synthesizing physically realistic human motion in lowdimensional, behavior-specific spaces. ACM Trans., on Graph. 23(3), 514–521 (2004)

    Article  Google Scholar 

  21. Jain, S., Ye, Y., Liu, K.: Optimization-based interactive motion synthesis. ACM Trans. on Graph. 28(1), 10:1–10:12 (2009)

    Google Scholar 

  22. Shin, H., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of Pacific Graphics 2003, pp. 194–203 (2003)

    Google Scholar 

  23. Zordan, V., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. on Graph. 24, 697–701 (2005)

    Article  Google Scholar 

  24. Mitake, H., Asano, K., Aoki, T., Marc, S., Sato, M., Hasegawa, S.: Physics-driven multi dimensional keyframe animation for artist-directable interactive character. Computer Graphics Forum 28(2), 279–287 (2009)

    Article  Google Scholar 

  25. Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. ACM Trans. Graph. 26(3), 7:1–7:7 (2007)

    Google Scholar 

  26. Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion controllers. ACM Trans. on Graph. 26(3), 5 (2007)

    Article  Google Scholar 

  27. Ishigaki, S., White, T., Zordan, V.B., Liu, C.K.: Performance-based control interface for character animation. ACM Trans. on Graph. 28(3), 61:1–61:8 (2009)

    Google Scholar 

  28. Kajita, S.: Humanoid Robot, Ohmsha, Japan (2005)

    Google Scholar 

  29. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum 24, 343–352 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, X., Hoyet, L., Geng, W., Multon, F. (2010). Responsive Action Generation by Physically-Based Motion Retrieval and Adaptation. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics