Skip to main content

Perception Based Real-Time Dynamic Adaptation of Human Motions

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

Abstract

This paper presents a new real-time method for dynamics-based animation of virtual characters. It is based on rough physical approximations that lead to natural-looking and physically realistic human motions. The first part of this work consists in evaluating the relevant parameters of natural motions performed by people subject to various external perturbations. According to this pilot study, we have defined a method that is able to adapt in real-time the motion of a virtual character in order to satisfy kinematic and dynamic constraints, such as pushing, pulling and carrying objects with more or less mass. This method relies on laws provided by experimental studies that enable us to avoid using complex mechanical models and thus save computation time. One of the most important assumption consists in decoupling the pose of character and the timing of the motion. Thanks to this method, it is possible to animate up to 15 characters at 60Hz while dealing with complex kinematic and dynamic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24(3), 697–701 (2005)

    Article  Google Scholar 

  2. Yin, K., Loken, K., van de Panne, M.: Simbicon: simple biped locomotion control. ACM Trans. Graph. 26(3), 105 (2007)

    Article  Google Scholar 

  3. Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Graph. 28(3) (2009)

    Google Scholar 

  4. Shiratori, T., Coley, B., Cham, R., Hodgins, J.K.: Simulating balance recovery responses to trips based on biomechanical principles. In: Proceedings of SCA 2009, pp. 37–46 (2009)

    Google Scholar 

  5. Hoyet, L., Multon, F., Komura, T., Lecuyer, A.: Can we distinguish biological motions of virtual humans? Perceptual study with captured motions of weight lifting. To appear in the Proceedings of VRST 2010 (2010)

    Google Scholar 

  6. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: Proceedings of SIGGRAPH 1995, pp. 71–78 (1995)

    Google Scholar 

  7. Faloutsos, P., van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: Proceedings of SIGGRAPH 2001, pp. 251–260 (2001)

    Google Scholar 

  8. Faloutsos, P., van de Panne, M., Terzopoulos, D.: The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills. Computers and Graphics 25(6), 933–953 (2001)

    Article  Google Scholar 

  9. Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of SCA 2002, pp. 89–96 (2002)

    Google Scholar 

  10. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of SIGGRAPH 1988, pp. 159–168 (August 1988)

    Google Scholar 

  11. Cohen, M.F.: Interactive spacetime control for animation. SIGGRAPH Comput. Graph. 26(2), 293–302 (1992)

    Article  Google Scholar 

  12. Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. In: Proceedings of SIGGRAPH 2002, pp. 408–416 (2002)

    Google Scholar 

  13. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)

    Article  Google Scholar 

  14. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. In: Proceedings of SIGGRAPH 2003, pp. 417–426 (2003)

    Google Scholar 

  15. Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)

    Article  Google Scholar 

  16. Komura, T., Ho, E.S.L., Lau, R.W.H.: Animating reactive motion using momentum-based inverse kinematics: Motion capture and retrieval. Comput. Animat. Virtual Worlds 16(3-4), 213–223 (2005)

    Article  Google Scholar 

  17. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Pushing people around. In: Proceedings of SCA 2005, pp. 59–66 (2005)

    Google Scholar 

  18. Mitake, H., Asano, K., Aoki, T., Salvati, M., Sato, M., Hasegawa, S.: Physics-driven multi dimensional keyframe animation for artist-directable interactive character. Comput. Graph. Forum 28(2), 279–287 (2009)

    Article  Google Scholar 

  19. Majkowska, A., Faloutsos, P.: Flipping with physics: motion editing for acrobatics. In: Proceedings of SCA 2007, pp. 35–44 (2007)

    Google Scholar 

  20. Yamane, K., Nakamura, Y.: Dynamics filter - concept and implementation of on-line motion generator for human figures. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pp. 688–695 (2000)

    Google Scholar 

  21. Pollard, N., Reitsma, P.: Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In: Proc. of Yale Workshop on Adaptive and Learning Systems (2001)

    Google Scholar 

  22. Tak, S., Ko, H.S.: A physically-based motion retargeting filter. ACM Trans. Graph. 24(1), 98–117 (2005)

    Article  Google Scholar 

  23. Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, PG 2003, p. 194 (2003)

    Google Scholar 

  24. O’Sullivan, C., Dingliana, J., Giang, T., Kaiser, M.K.: Evaluating the visual fidelity of physically based animations. ACM Trans. Graph. 22(3), 527–536 (2003)

    Article  Google Scholar 

  25. Reitsma, P.S.A., O’Sullivan, C.: Effect of scenario on perceptual sensitivity to errors in animation. ACM Trans. Appl. Percept. 6(3), 1–16 (2009)

    Article  Google Scholar 

  26. Yeh, T.Y., Reinman, G., Patel, S.J., Faloutsos, P.: Fool me twice: Exploring and exploiting error tolerance in physics-based animation. ACM Trans. Graph. 29(1) (2009)

    Google Scholar 

  27. Bingham, G.P.: Kinematic form and scaling: further investigations on the visual perception of lifted weight. Journal of Experimental Psychology. Human Perception and Performance 13(2), 155–177 (1987)

    Article  Google Scholar 

  28. Runeson, S., Frykholm, G.: Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance 7, 733–740 (1981)

    Google Scholar 

  29. Hof, A.L.: The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 40, 451–457 (2007)

    Article  Google Scholar 

  30. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum, Eurographics 2005 Special Issue 24, 343–352 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoyet, L., Multon, F., Komura, T., Lecuyer, A. (2010). Perception Based Real-Time Dynamic Adaptation of Human Motions. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics