Skip to main content

Scalable and Robust Shepherding via Deformable Shapes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Abstract

In this paper, we present a new motion planning strategy for shepherding in environments containing obstacles. This instance of the group motion control problem is applicable to a wide variety of real life scenarios, such as animal herding simulation, civil crowd control training, and oil-spill cleanup simulation. However, the problem is challenging in terms of scalability and robustness because it is dynamic, highly underactuated, and involves multi-agent coordination. Our previous work showed that high-level probabilistic motion planning algorithms combined with simple shepherding behaviors can be beneficial in situations where low-level behaviors alone are insufficient. However, inconsistent results suggested a need for a method that performs well across a wider range of environments. In this paper, we present a new method, called Deform, in which shepherds view the flock as an abstracted deformable shape. We show that our method is more robust than our previous approach and that it scales more effectively to larger teams of shepherds and larger flocks. We also show Deform to be surprisingly robust despite increasing randomness in the motion of the flock.

This work is partially supported by NSF IIS-096053.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M.: Virtual fencing–past, present and future. The Rangeland Journal 29, 65–78 (2007)

    Article  Google Scholar 

  2. Applegate, R.: Riot control: materiel and techniques. Stackpole Books (1969)

    Google Scholar 

  3. Aubé, F., Shield, R.: Modeling the effect of leadership on crowd flow dynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–621. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Automat. 14(6), 926–939 (1998)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Brenner, M., Wijermans, N., Nussle, T., de Boer, B.: Simulating and controlling civilian crowds in robocup rescue. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)

    Google Scholar 

  7. Butler, Z., Corke, P., Peterson, R., Rus, D.: Virtual fences for controlling cows. In: Robotics and Automation. In: Proceedings of IEEE International Conference on ICRA 2004, April-1- May, vol. 5, pp. 4429–4436 (2004)

    Google Scholar 

  8. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory IT- 29, 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  10. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. In: Computer Graphics, pp. 29–38 (1999)

    Google Scholar 

  11. Halloy, J.: Colleagues: Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices. Science 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  12. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl., 2719–2726 (1997)

    Google Scholar 

  13. Kamphuis, A., Overmars, M.: Motion planning for coherent groups of entities. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 4, pp. 3815–3822 (2004)

    Google Scholar 

  14. Kirkland, J., Maciejewski, A.: A simulation of attempts to influence crowd dynamics. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4328–4333 (2003)

    Google Scholar 

  15. Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 995–1001 (2000)

    Google Scholar 

  16. Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans. Graph. 27(3), 1–8 (2008)

    Article  Google Scholar 

  17. Lai, Y.C., Chenney, S., Fan, S.: Group motion graphs. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2005, pp. 281–290. ACM, New York (2005)

    Chapter  Google Scholar 

  18. Lien, J.M., Bayazit, O.B., Sowell, R.T., Rodriguez, S., Amato, N.M.: Shepherding behaviors. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 4159–4164 (2004)

    Google Scholar 

  19. Ogawa, N., Oku, H., Hashimoto, K., Ishikawa, M.: Microrobotic visual control of motile cells using high-speed tracking system. IEEE Transactions on Robotics 21(4), 704–712 (2005)

    Article  Google Scholar 

  20. Potter, M.A., Meeden, L., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: IJCAI, pp. 1337–1343 (2001)

    Google Scholar 

  21. Reynolds, C.W.: Flocks, herds, and schools: A distributed behaviroal model. In: Computer Graphics, pp. 25–34 (1987)

    Google Scholar 

  22. Schubert, J., Suzic, R.: Decision support for crowd control: Using genetic algorithms with simulation to learn control strategies. In: Military Communications Conference, MILCOM 2007, pp. 1–7. IEEE, Los Alamitos (October 2007)

    Google Scholar 

  23. Schultz, A.C., Grefenstette, J.J., Adams, W.: Robo-shepherd: Learning complex robotic behaviors. In: Robotics and Manufacturing: Recent Trends in Research and Applications, vol. 6, pp. 763–768. ASME Press (1996)

    Google Scholar 

  24. Vaughan, R.T., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. J. Robot. and Autonom. Sys. 31, 109–117 (2000)

    Article  Google Scholar 

  25. Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), St. Louis Missouri (2009) (to appear)

    Google Scholar 

  26. Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  27. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Gross, M., James, D. (eds.) Proceedings of EUROGRAPHICS / ACM SIGGRAPH Symposium on Computer Animation (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, J.F., Vo, C., Lien, JM. (2010). Scalable and Robust Shepherding via Deformable Shapes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics