Skip to main content

Following a Large Unpredictable Group of Targets among Obstacles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Abstract

Camera control is essential in both virtual and real-world environments. Our work focuses on an instance of camera control called target following, and offers an algorithm, based on the ideas of monotonic tracking regions and ghost targets, for following a large coherent group of targets with unknown trajectories, among known obstacles. In multiple-target following, the camera’s primary objective is to follow and maximize visibility of multiple moving targets. For example, in video games, a third-person view camera may be controlled to follow a group of characters through complicated virtual environments. In robotics, a camera attached to robotic manipulators could also be controlled to observe live performers in a concert, monitor assembly of a mechanical system, or maintain task visibility during teleoperated surgical procedures. To the best of our knowledge, this work is the first attempting to address this particular instance of camera control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay, T., Li, Y., Ang Jr., M., Hsu, D.: A greedy strategy for tracking a locally predictable target among obstacles. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2342–2347 (2006)

    Google Scholar 

  2. Bares, W.H., Grégoire, J.P., Lester, J.C.: Realtime constraint-based cinematography for complex interactive 3d worlds. In: AAAI 1998/IAAI 1998, pp. 1101–1106. AAAI, Menlo Park (1998)

    Google Scholar 

  3. Becker, C., González-Banos, H., Latombe, J.C., Tomasi, C.: An intelligent observer. In: The 4th International Symposium on Experimental Robotics IV, pp. 153–160. Springer, London (1997)

    Google Scholar 

  4. Bhattacharya, S., Hutchinson, S.: On the existence of nash equilibrium for a two-player pursuit-evasion game with visibility constraints. Int. J. of Rob. Res. 57, 251–265 (2009)

    MATH  Google Scholar 

  5. Butz, A.: Anymation with cathi. In: Proceedings of the 14th Annual National Conference on Artificial Intelligence (AAAI/IAAI), pp. 957–962 (1997)

    Google Scholar 

  6. Courty, N., Marchand, E.: Computer animation: a new application for image-based visual servoing. In: Proceedings 2001 ICRA, IEEE International Conference on Robotics and Automation, vol. 1, pp. 223–228 (2001)

    Google Scholar 

  7. Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Proceedings of Graphics Interface 1994, pp. 190–199 (1994)

    Google Scholar 

  8. Geraerts, R.: Camera planning in virtual environments using the corridor map method. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 194–209. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Gleicher, M., Witkin, A.: Through-the-lens camera control. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 331–340. ACM, New York (1992)

    Chapter  Google Scholar 

  10. Goemans, O., Overmars, M.: Automatic generation of camera motion to track a moving guide. In: International Workshop on the Algorithmic Foundations of Robotics, pp. 187–202 (2004)

    Google Scholar 

  11. Gonzalez-Banos, H., Lee, C.Y., Latombe, J.C.: Real-time combinatorial tracking of a target moving unpredictably among obstacles. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 2, pp. 1683–1690 (2002)

    Google Scholar 

  12. Halper, N., Helbing, R., Strothotte, T.: A camera engine for computer games: Managing the trade-off between constraint satisfaction and frame coherence. Computer Graphics Forum 20(3), 174–183 (2002)

    Article  Google Scholar 

  13. Hughes, S., Lewis, M.: Robotic camera control for remote exploration. In: CHI 2004: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 511–517. ACM, New York (2004)

    Chapter  Google Scholar 

  14. Jung, B., Sukhatme, G.: A region-based approach for cooperative multi-target tracking in a structured environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2764–2769 (2002)

    Google Scholar 

  15. LaValle, S., Gonzalez-Banos, H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 731–736 (1997)

    Google Scholar 

  16. Li, T.Y., Cheng, C.C.: Real-time camera planning for navigation in virtual environments. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 118–129. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Murrieta-Cid, R., Tovar, B., Hutchinson, S.: A sampling-based motion planning approach to maintain visibility of unpredictable targets. Auton. Robots 19(3), 285–300 (2005)

    Article  Google Scholar 

  18. Oskam, T., Sumner, R.W., Thuerey, N., Gross, M.: Visibility transition planning for dynamic camera control. In: SCA 2009: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 55–65 (2009)

    Google Scholar 

  19. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving targets. Auton. Robots 12(3), 231–255 (2002)

    Article  MATH  Google Scholar 

  20. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters. The International Journal of Robotics Research 22(2), 99–116 (2003)

    Article  Google Scholar 

  21. Seligmann, D.D., Feiner, S.: Automated generation of intent-based 3d illustrations. SIGGRAPH Comput. Graph. 25(4), 123–132 (1991)

    Article  Google Scholar 

  22. Vo, C., Lien, J.M.: Visibility-based strategies for searching and tracking unpredictable coherent targets among known obstacles. In: ICRA 2010 Workshop: Search and Pursuit/Evasion in the Physical World (2010)

    Google Scholar 

  23. Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc. of IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1024–1031 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vo, C., Lien, JM. (2010). Following a Large Unpredictable Group of Targets among Obstacles. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics