Skip to main content

Simulating Formations of Non-holonomic Systems with Control Limits along Curvilinear Coordinates

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

Abstract

Many games require a method for simulating formations of systems with non-trivial motion constraints, such as aircraft and boats. This paper describes a computationally efficient method for this objective, inspired by solutions in robotics, and describes how to guarantee the satisfaction of the physical constraints. The approach allows a human player to select almost an arbitrary geometric configuration for the formation and to control the aircraft as a single entity. The formation is fixed along curvilinear coordinates, defined by the curvature of the reference trajectory, resulting in naturally looking paths. Moreover, the approach supports dynamic formations and transitions from one desired shape to another. Experiments with a game engine confirm that the proposed method achieves the desired objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: IEEE International Conference on Robotics and Automation, pp. 73–80 (April 2000)

    Google Scholar 

  3. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robotics and Autonomous Systems 46(2), 65–78 (2004)

    Article  Google Scholar 

  4. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium on Robotics Research, ISRR (September 2009)

    Google Scholar 

  5. Bottesi, G., Laumond, J.P., Fleury, S.: A motion planning based video game. Tech. rep., LAAS CNRS (October 2004)

    Google Scholar 

  6. Brogan, D.C., Hodgins, J.K.: Group behaviors for systems with significant dynamics. Autonomous Robots 4, 137–153 (1997)

    Article  Google Scholar 

  7. Desai, J., Ostrowski, J., Kumar, V.J.: Modeling and control of formations of nonholonomic mobile robots. Transactions on Robotics and Aut. 17(6), 905–908 (2001)

    Article  Google Scholar 

  8. Ennis, C., Peters, C., O’Sullivan, C.: Perceptual evaluation of position and orientation context rules for pedestrian formations. In: Symposium on Applied Perception in Graphics and Visualization (APGV 2008), pp. 75–82 (2008)

    Google Scholar 

  9. Fierro, R., Belta, C., Desai, K., Kumar, V.J.: On controlling aircraft formations. In: IEEE Conf. on Decision and Control, Orlando, FL, pp. 1065–1070 (Decmber 2001)

    Google Scholar 

  10. Fredslund, J., Mataric, M.J.: A general, local algorithm for robot formations. IEEE Transactions on Robotics and Automation 18(5), 846–873 (2002)

    Article  Google Scholar 

  11. Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using generalized social potential fields. In: ICRA, Kobe, Japan, pp. 3695–3702 (2009)

    Google Scholar 

  12. Geraerts, R., Kamphuis, A., Karamouzas, I., Overmars, M.: Using the corridor map method for path planning for a large number of characters. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 11–22. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans. on Automatic Control 8(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)

    Article  Google Scholar 

  15. Lau, M., Kuffner, J.: Behavior planning for character animation. In: ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA (2005)

    Google Scholar 

  16. Lewis, M., Tan, K.H.: High-precision formation control of mobile robotis using virtual structures. Autonomous Robots 4(4), 387–403 (1997)

    Article  Google Scholar 

  17. Lien, J.M., Rodriguez, S., Malric, J.P., Amato, N.: Shepherding behaviors with multiple shepherds. In: International Conf. on Robotics and Automation (2005)

    Google Scholar 

  18. Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Distributed multi-robot task assignment and formation control. In: ICRA, pp. 128–133 (May 2008)

    Google Scholar 

  19. Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simulations using navigation fields. IEEE Transactions on Visualization and Computer Graphics, TVCG (2010)

    Google Scholar 

  20. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA), San Diego, CA, vol. 3, pp. 99–108 (August 3-4, 2007)

    Google Scholar 

  21. Snape, J., Manocha, D.: Navigating multiple simple-airplanes in 3d workspace. In: IEEE International Conference on Robotics and Automation, ICRA (2010)

    Google Scholar 

  22. Stylianou, S., Chrysanthou, Y.: Crowd self organization, streaming and short path smoothing. In: Computer Graphics, Visualization and Computer Vision (2006)

    Google Scholar 

  23. Tabuada, P., Pappas, G.J., Lima, P.: Motion feasibility of multi-agent formations. IEEE Transactions on Robotics 21(3), 387–392 (2005)

    Article  Google Scholar 

  24. Takahashi, S., Yoshida, K., Kwon, T., Lee, K.H., Lee, J., Shin, S.Y.: Spectral-based group formation control. Comp. Graph. Forum: Eurographics 28, 639–648 (2009)

    Article  Google Scholar 

  25. Tanner, H.G., Pappas, G.J., Kumar, V.J.: Leader-to-formation stability. IEEE Transactions on Robotics and Automation (2004)

    Google Scholar 

  26. Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group control. In: Intern. Conf. on Intelligent Robots and Systems, St. Louis, MO (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krontiris, A., Louis, S., Bekris, K.E. (2010). Simulating Formations of Non-holonomic Systems with Control Limits along Curvilinear Coordinates. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics