Advertisement

Scalable Transactions in the Cloud: Partitioning Revisited

  • Francisco Maia
  • José Enrique Armendáriz-Iñigo
  • M. Idoia Ruiz-Fuertes
  • Rui Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)

Abstract

Cloud computing is becoming one of the most used paradigms to deploy highly available and scalable systems. These systems usually demand the management of huge amounts of data, which cannot be solved with traditional nor replicated database systems as we know them. Recent solutions store data in special key-value structures, in an approach that commonly lacks the consistency provided by transactional guarantees, as it is traded for high scalability and availability. In order to ensure consistent access to the information, the use of transactions is required. However, it is well-known that traditional replication protocols do not scale well for a cloud environment. Here we take a look at current proposals to deploy transactional systems in the cloud and we propose a new system aiming at being a step forward in achieving this goal. We proceed to focus on data partitioning and describe the key role it plays in achieving high scalability.

Keywords

Distributed Systems Cloud computing Transactional support 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a solution. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 173–182. ACM Press, New York (1996)Google Scholar
  2. 2.
    Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 2000, p. 7. ACM, New York (2000)CrossRefGoogle Scholar
  3. 3.
    Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)CrossRefGoogle Scholar
  4. 4.
    von Eicken, T.: Right scale blog: Animoto’s facebook scale-up (2010), http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/
  5. 5.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2) (2008)Google Scholar
  6. 6.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: Bressoud, T.C., Kaashoek, M.F. (eds.) SOSP, pp. 205–220. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)Google Scholar
  8. 8.
    Aguilera, M.K., Merchant, A., Shah, M.A., Veitch, A.C., Karamanolis, C.T.: Sinfonia: A new paradigm for building scalable distributed systems. ACM Trans. Comput. Syst. 27(3) (2009)Google Scholar
  9. 9.
    Das, S., Agrawal, D., Abbadi, A.E.: Elastras: An elastic transactional data store in the cloud. In: HotCloud 2009 Workshop at USENIX (2009)Google Scholar
  10. 10.
    Das, S., Agarwal, S., Agrawal, D., Abbadi, A.E.: Elastras: An elastic, scalable, and self managing transactional database for the cloud. Technical Report UCSB-CS-2010-04, University of California, Santa Barbara (2010)Google Scholar
  11. 11.
    Jones, E.P.C., Abadi, D.J., Madden, S.: Low overhead concurrency control for partitioned main memory databases. In: Elmagarmid, A.K., Agrawal, D. (eds.) SIGMOD Conference, pp. 603–614. ACM, New York (2010)Google Scholar
  12. 12.
    Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-oriented transaction execution. Technical Report CMU-CS-10-101, Carnegie Mellon University (2010)Google Scholar
  13. 13.
    Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In: OSDI, USENIX Association, pp. 335–350 (2006)Google Scholar
  14. 14.
    Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)CrossRefGoogle Scholar
  15. 15.
    Pedone, F.: The Database State Machine and Group Communication Issues. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland (1999)Google Scholar
  16. 16.
    Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)CrossRefGoogle Scholar
  17. 17.
    Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco (1993)zbMATHGoogle Scholar
  18. 18.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley, Reading (1987)Google Scholar
  19. 19.
    Lin, Y., Kemme, B., Jiménez-Peris, R., Patiño-Martínez, M., Armendáriz-Iñigo, J.E.: Snapshot isolation and integrity constraints in replicated databases. ACM Trans. Database Syst. 34(2) (2009)Google Scholar
  20. 20.
    Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique of ANSI SQL isolation levels. In: Carey, M.J., Schneider, D.A. (eds.) SIGMOD Conference, pp. 1–10. ACM Press, New York (1995)Google Scholar
  21. 21.
    Plattner, C., Alonso, G., Özsu, M.T.: Extending DBMSs with satellite databases. VLDB J. 17(4), 657–682 (2008)CrossRefGoogle Scholar
  22. 22.
    Lin, Y., Kemme, B., Patiño-Martínez, M., Jiménez-Peris, R.: Middleware based data replication providing snapshot isolation. In: Özcan, F. (ed.) SIGMOD Conference, pp. 419–430. ACM, New York (2005)Google Scholar
  23. 23.
    Elnikety, S., Zwaenepoel, W., Pedone, F.: Database replication using generalized snapshot isolation. In: SRDS, pp. 73–84. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  24. 24.
    Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehensive study. ACM Comput. Surv. 33(4), 427–469 (2001)CrossRefGoogle Scholar
  25. 25.
    Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G., Kemme, B.: Are quorums an alternative for data replication? ACM Trans. Database Syst. 28(3), 257–294 (2003)CrossRefGoogle Scholar
  26. 26.
    Serrano, D., Patiño-Martínez, M., Jiménez-Peris, R., Kemme, B.: Boosting database replication scalability through partial replication and 1-copy-snapshot-isolation. In: PRDC, pp. 290–297. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  27. 27.
    Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)CrossRefGoogle Scholar
  28. 28.
    Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Patil, S., Fox, A., Patterson, D.: Cloudstone: Multi-platform, multi-language benchmark and measurement tools for web 2.0. In: 1st Workshop on Cloud Computing (CCA 2008) (2008)Google Scholar
  29. 29.
    Gartner:: Gartner identifies top ten disruptive technologies for 2008 to 2012 (2010), http://www.gartner.com/it/page.jsp?id=681107

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francisco Maia
    • 1
  • José Enrique Armendáriz-Iñigo
    • 2
  • M. Idoia Ruiz-Fuertes
    • 3
  • Rui Oliveira
    • 1
  1. 1.Computer Science and Technology CenterUniversity of MinhoBragaPortugal
  2. 2.Departamento de Ingeniería Matemática e InformáticaUniversidad Pública de NavarraPamplonaSpain
  3. 3.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations