A Semantic Similarity Framework Exploiting Multiple Parts-of Speech

  • Giuseppe Pirró
  • Jérôme Euzenat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


Semantic similarity between words aims at establishing resemblance by interpreting the meaning of the words being compared. The Semantic Web can benefit from semantic similarity in several ways: ontology alignment and merging, automatic ontology construction, semantic-search, to cite a few. Current approaches mostly focus on computing similarity between nouns. The aim of this paper is to define a framework to compute semantic similarity even for other grammar categories such as verbs, adverbs and adjectives. The framework has been implemented on top of WordNet. Extensive experiments confirmed the suitability of this approach in the task of solving English tests.


Semantic Similarity Feature Based Similarity Ontologies Synonymy detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cilibrasi, R.L., Vitanyi, P.M.B.: The google similarity distance. IEEE TKDE 19(3), 370–383 (2007)Google Scholar
  2. 2.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)CrossRefGoogle Scholar
  3. 3.
    Hai, C., Hanhua, J.: Semrex: Efficient search in semantic overlay for literature retrieval. FGCS 24(6), 475–488 (2008)CrossRefGoogle Scholar
  4. 4.
    Hirst, G., St-Onge, D.: Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms. In: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)Google Scholar
  5. 5.
    Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. ROCLING X (1997)Google Scholar
  6. 6.
    Kashyap, V., Sheth, A.: Schematic and semantic similarities between database objects: A context-based approach. VLDB Journal 5, 276–304 (1996)CrossRefGoogle Scholar
  7. 7.
    Leacock, C., Chodorow, M., Miller, G.A.: Using corpus statistics and wordnet relations for sense identification. Computational Linguistics 24(1), 147–165 (1998)Google Scholar
  8. 8.
    Li, Y., Bandar, A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE TKDE 15(4), 871–882 (2003)Google Scholar
  9. 9.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. of Conf. on Machine Learning, pp. 296–304 (1998)Google Scholar
  10. 10.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: AAAI, pp. 1408–1413 (2007)Google Scholar
  11. 11.
    Miller, G.: Wordnet an on-line lexical database. International Journal of Lexicography 3(4), 235–312 (1990)CrossRefGoogle Scholar
  12. 12.
    Pirrò, G.: A semantic similarity metric combining features and intrinsic information content. Data Knowl. Eng. 68(11), 1289–1308 (2009)CrossRefGoogle Scholar
  13. 13.
    Pirrò, G., Ruffolo, M., Talia, D.: Secco: On building semantic links in peer to peer networks. Journal on Data Semantics XII, 1–36 (2008)Google Scholar
  14. 14.
    Rada, R., Mili, H., Bicknell, M., Blettner, E.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19, 17–30 (1989)CrossRefGoogle Scholar
  15. 15.
    Resnik, P.: Information content to evaluate semantic similarity in a taxonomy. In: Proc. of IJCAI 1995, pp. 448–453 (1995)Google Scholar
  16. 16.
    Resnik, P., Diab, M.: Measuring verb similarity. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, pp. 399–404 (2000)Google Scholar
  17. 17.
    Schaeffer, B., Wallace, R.: Semantic similarity and the comparison of word meanings. J. Experiential Psychology 82, 343–346 (1969)CrossRefGoogle Scholar
  18. 18.
    Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in wordnet. In: Proc. of ECAI 2004, pp. 1089–1090 (2004)Google Scholar
  19. 19.
    Turney, P.D.: Mining the web for synonyms: Pmi-ir versus lsa on toefl. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Tversky, A.: Features of similarity. Psychological Review 84(2), 327–352 (1977)CrossRefGoogle Scholar
  21. 21.
    Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G., Milios, E.E.: Semantic similarity methods in wordnet and their application to information retrieval on the web. In: WIDM, pp. 10–16. ACM, New York (2005)Google Scholar
  22. 22.
    Zuber, V.S., Faltings, B.: Oss: A semantic similarity function based on hierarchical ontologies. In: IJCAI, pp. 551–556 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giuseppe Pirró
    • 1
  • Jérôme Euzenat
    • 1
  1. 1.INRIA Grenoble Rhône-Alpes & LIGMontbonnotFrance

Personalised recommendations