Towards Duplicate Detection for Situation Awareness Based on Spatio-temporal Relations

  • Norbert Baumgartner
  • Wolfgang Gottesheim
  • Stefan Mitsch
  • Werner Retschitzegger
  • Wieland Schwinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


Systems supporting situation awareness typically integrate information about a large number of real-world objects anchored in time and space provided by multiple sources. These sources are often characterized by identical, incomplete, and even contradictory information. Because of that, duplicate detection methods are of paramount importance, allowing to explore whether or not information concerns one and the same real-world object. Although many such duplicate detection methods exist, a recent survey revealed that the characteristics of situation awareness—highly dynamic and vague information, which is often available in qualitative form only—are not supported sufficiently well. This paper proposes concepts for qualitative duplicate detection to cope with these key issues of situation awareness based on spatio-temporal relations between objects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bailey-Kellogg, C., Zhao, F.: Qualitative spatial reasoning - extracting and reasoning with spatial aggregates. AI Magazine 24(4), 47–60 (2003)Google Scholar
  3. 3.
    Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)zbMATHGoogle Scholar
  4. 4.
    Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: On optimization of predictions in ontology-driven situation awareness. In: Karagiannis, D., Jin, Z. (eds.) KSEM 2009. LNCS, vol. 5914, pp. 297–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: “Same, Same but Different”—A Survey on Duplicate Detection Methods for Situation Awareness. In: Proceedings of the 8th International Conference on Ontologies, DataBases and Applications of Semantics, Vilamoura, Portugal. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: BeAware!—situation awareness, the ontology-driven way. Accepted for publication in: International Journal of Data and Knowledge Engineering (2010)Google Scholar
  7. 7.
    Bhatt, M., Rahayu, W., Sterling, G.: Qualitative simulation: Towards a situation calculus based unifying semantics for space, time and actions. In: Proceedings of the Conference on Spatial Information Theory, Ellicottville, NY, USA (2005)Google Scholar
  8. 8.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys 41(1) (2008)Google Scholar
  9. 9.
    Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the International Conference on Management of Data, pp. 491–502. ACM, New York (2005)Google Scholar
  10. 10.
    Clarke, B.L.: A calculus of individuals based on “connection”. Notre Dame Journal Formal Logic 22(3), 204–218 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cohn, A.G., Renz, J.: Qualitative Spatial Representation and Reasoning. In: Handbook of Knowledge Representation, pp. 551–596. Elsevier Science Publishers Ltd., Amsterdam (2008)CrossRefGoogle Scholar
  12. 12.
    Cui, Z., Cohn, A.G., Randell, D.A.: Qualitative simulation based on a logical formalism of space and time. In: Proceedings AAAI 1992, pp. 679–684. AAAI Press, Menlo Park (1992)Google Scholar
  13. 13.
    Deza, M.-M., Deza, E.: Dictionary of Distances. Elsevier Science Publishers Ltd., Amsterdam (2006)zbMATHGoogle Scholar
  14. 14.
    Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 304–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Dylla, F., Wallgrün, J.O.: On generalizing orientation information in OPRAm. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 274–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Dylla, F., Wallgrün, J.O.: Qualitative spatial reasoning with conceptual neighborhoods for agent control. Journal of Intelligent Robotics Systems 48(1), 55–78 (2007)CrossRefGoogle Scholar
  17. 17.
    Endsley, M.: Situation Awareness Analysis and Measurement. In: Theoretical Underpinnings of Situation Awareness: A Critical Review, pp. 3–33. Lawrence Erlbaum Associates, New Jersey (2000)Google Scholar
  18. 18.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Proceedings of the Imacs International Workshop on Decision Support Systems and Qualitative Reasoning, pp. 181–187 (1991)Google Scholar
  19. 19.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54(1), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proc. of the 23rd Int. Conf. on Data Engineering, pp. 816–825. IEEE, Los Alamitos (2007)Google Scholar
  21. 21.
    Frentzos, E., Pelekis, N., Ntoutsi, I., Theodoridis, Y.: Trajectory Database Systems. In: Mobility, Data Mining and Privacy—Geographic Knowledge Discovery, pp. 151–188. Springer, Heidelberg (2008)Google Scholar
  22. 22.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  23. 23.
    Hwang, J.-R., Kang, H.-Y., Li, K.-J.: Searching for similar trajectories on road networks using spatio-temporal similarity. In: Proc. of the 10th East Euro. Conf. on Adv. in Databases and Inf. Sys., Thessaloniki, Greece, pp. 282–295. Springer, Heidelberg (2006)Google Scholar
  24. 24.
    Johannesson, M.: Combining integral and separable subspaces. In: Proceedings of the 23rd Annual Conference of the Cognitive Science Society, Edinburgh, Scotland, UK, pp. 447–452. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  25. 25.
    Keane, M.T., Hacket, D., Davenport, J.: Similarity processing depends on the similarities present: Effects of relational prominence in similarity and analogical processing. In: Proceedings of the 23rd Annual Conference of the Cognitive Science Society, Edinburgh, Scotland, UK. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  26. 26.
    Kirschfink, H., Hernandez, J., Boero, M.: Intelligent traffic management models. In: Proccedings of the European Symposium on Intelligent Techniques (ESIT), Aachen, Germany, pp. 36–45 (September 2000)Google Scholar
  27. 27.
    Kokar, M.M., Matheusb, C.J., Baclawski, K.: Ontology-based situation awareness. International Journal of Information Fusion 10(1), 83–98 (2009)CrossRefGoogle Scholar
  28. 28.
    Ligozat, G.: Towards a general characterization of conceptual neighborhoods in temporal and spatial reasoning. In: Proceedings of the AAAI 1994 Workshop on Spatial and Temporal Resoning, Seattle, WA, USA, pp. 55–59. AAAI, Menlo Park (1994)Google Scholar
  29. 29.
    Ragni, M., Wölfl, S.: Temporalizing cardinal directions: From constraint satisfaction to planning. In: Proceedings of 10th International Conference on Principles of Knowledge Representation and Reasoning, pp. 472–480. AAAI Press, Menlo Park (2006)Google Scholar
  30. 30.
    Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  31. 31.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning. Morgan Kaufmann, San Francisco (1992)Google Scholar
  32. 32.
    Schwering, A.: Evaluation of a semantic similarity measure for natural language spatial relations. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 116–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Schwering, A.: Approaches to semantic similarity measurement for geo-spatial data: A survey. Transactions in GIS 12(1), 5–29 (2008)CrossRefGoogle Scholar
  34. 34.
    van de Weghe, N., Maeyer, P.D.: Conceptual neighborhood diagrams for representing moving objects. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Norbert Baumgartner
    • 1
  • Wolfgang Gottesheim
    • 2
  • Stefan Mitsch
    • 2
  • Werner Retschitzegger
    • 2
  • Wieland Schwinger
    • 2
  1. Communication Technology Mgt. Ltd.ViennaAustria
  2. 2.Johannes Kepler University LinzLinzAustria

Personalised recommendations