Advertisement

Ontology-Driven Possibilistic Reference Fusion

  • Fatiha Saïs
  • Rallou Thomopoulos
  • Sébastien Destercke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)

Abstract

It often happens that different references (i.e. data descriptions), possibly coming from different heterogeneous data sources, concern the same real world entity. In such cases, it is necessary: (i) to detect, through reconciliation methods, whether different data descriptions refer to the same real world entity and (ii) to fuse them into a unique representation. Here we assume the reference reconciliation is solved, and we propose a fusion method based on possibility theory, able to cope with uncertainty and with ontological knowledge. An implementation using W3C standards is provided. Rising from the fusion process, an ontology enrichment procedure is proposed to complete the global ontology.

Keywords

Data integration Data fusion Ontologies Hierarchical Fuzzy Set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method for data reconciliation. J. Data Semantics 12, 66–94 (2009)Google Scholar
  3. 3.
    Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems. In: VLDB, San Francisco, CA, USA, pp. 413–424 (1996)Google Scholar
  4. 4.
    Dubois, D., Prade, H.: Tolerant fuzzy pattern matching: an introduction. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems, pp. 42–58. Physica-Verlag, Heidelberg (1995)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Possibility Theory - An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)Google Scholar
  6. 6.
    Dean, M., Schreiber, G.: OWL Web Ontology Language Reference, W3C Recommendation Technical report (2004), http://www.w3.org/tr/owl-ref/
  7. 7.
    Walley, P.: Measures of uncertainty in expert systems. Artifical Intelligence 83, 1–58 (1996)Google Scholar
  8. 8.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)Google Scholar
  9. 9.
    Motik, B., Horrocks, I.: Owl datatypes: Design and implementation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 307–322. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, Morristown, NJ, USA, pp. 133–138. Association for Computational Linguistics (1994)Google Scholar
  11. 11.
    Saïs, F., Thomopoulos, R.: Reference fusion and flexible querying. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1541–1549. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Cohen, W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for matching names and records. In: Proc. of the KDD-2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation (2003)Google Scholar
  13. 13.
    Dubois, D., Prade, H.: Possibility theory in information fusion. In: Riccia, G.D., Lenz, H., Kruse, R. (eds.) Data Fusion and Perception. CISM Courses and Lectures, vol. 431, pp. 53–76. Springer, Berlin (2001)CrossRefGoogle Scholar
  14. 14.
    W3C: Owl ontologies to rdf graphs (2007), http://www.w3.org/2007/owl/wiki/mapping-to-rdf-graphs
  15. 15.
    Mazzieri, M.: A fuzzy rdf semantics to represent trust metadata. In: 1st Workshop on Semantic Web. Applications and Perspectives (2004)Google Scholar
  16. 16.
    Buche, P., Dibie-Barthélemy, J., Hignette, G.: Flexible querying of fuzzy rdf annotations using fuzzy conceptual graphs. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 133–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hayes, P.: RDF Semantics Technical report (2004), http://www.w3.org/tr/rdf-mt/
  18. 18.
    Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information spaces. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD 2005, pp. 85–96. ACM Press, New York (2005)Google Scholar
  19. 19.
    Subrahmanian, V., Adali, S., Brink, A., Emery, R., Lu, J.L., Rajput, A., Rogers, T.J., Ross, R., Ward, C.: Hermes: A heterogeneous reasoning and mediator system (1995)Google Scholar
  20. 20.
    Bleiholder, J., Naumann, F.: Declarative data fusion – Syntax, semantics, and implementation. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 58–73. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Calegari, S., Ciucci, D.: Integrating fuzzy logic in ontologies. In: Proc. of the 8th International Conference on Enterprise Information Systems, pp. 66–73 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fatiha Saïs
    • 1
  • Rallou Thomopoulos
    • 2
    • 3
  • Sébastien Destercke
    • 3
  1. 1.LRI (Paris-Sud 11 Univ.) and INRIA SaclayOrsayFrance
  2. 2.LIRMM (CNRS & Univ. Montpellier II)Montpellier cedex 5France
  3. 3.INRA/CIRAD, UMR1208Montpellier cedex 1France

Personalised recommendations