XML-SIM-CHANGE: Structure and Content Semantic Similarity Detection among XML Document Versions

  • Waraporn Viyanon
  • Sanjay K. Madria
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


XML documents from different sources may represent the same or similar information with respect to content and structure. Being able to integrate similar XML documents is important to query systems and search engines. However, information changes periodically, therefore, it is important to detect the changes among different versions of an XML document and use the changed information to discover semantic similarity among XML documents. In this paper, we introduce such an approach to detect XML similarity using the change detection mechanism to join XML document versions. In our approach, keys in subtrees play an important role in order to avoid unnecessary comparisons of subtrees within different XML versions of the same document. We use relational database to store XML versions and apply SQL for detecting similarities. We show that our approach is highly scalable and has better efficiency in terms of execution time and provides comparable result quality.


XML Similarity Change Detection Keys Join 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACM SIGMOD Record in XML (n.d.),
  2. 2.
    Apostolico, A., Galil, Z.: Pattern Matching Algorithms. Oxford University Press, USA (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bille, P.: Tree edit distance, alignment distance and inclusion. IT Univ. of Copenhagen, Citeseer (2003)Google Scholar
  4. 4.
    Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer Networks, 473–487 (2002)Google Scholar
  5. 5.
    Chawathe, S.: Comparing hierarchical data in external memory, Citeseer, pp. 90–101(1999)Google Scholar
  6. 6.
    Christiane, F.: WordNet: An Electronic Lexical Database. MIT press Cambridge, MA (1998)zbMATHGoogle Scholar
  7. 7.
    Extensible Markup Language (XML). In: World Wide Web Consortium (W3C),
  8. 8.
    Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. Jiang, J.J., Conrath, D.W., pp. 19–33 (1997)Google Scholar
  9. 9.
    Liang, W., Yokota, H.: A path-sequence based discrimination for subtree matching in approximate XML joins. In: Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW 2006), pp. 23–28 (2006)Google Scholar
  10. 10.
    Liang, W., Yokota, H.: LAX: An Efficient Approximate XML Join Based on Clustered Leaf Nodes for XML Data Integration. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 82–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Liang, W., Yokota, H.: SLAX: An Improved Leaf-Clustering Based Approximate XML Join Algorithm for Integrating XML Data at Subtree Classes. IPSJ Digital Courier 2, 382–392 (2006)CrossRefGoogle Scholar
  12. 12.
    Pirro, G., Seco, N.: Design, Implementation and Evaluation of a New Semantic Similarity Metric Combining Features and Intrinsic Information Content. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th Internaltional Joint Conference on Artificial Intelligence, pp. 448–453 (1995)Google Scholar
  14. 14.
    Sathyanarayanan, S., Sanjay, M.: XREL CHANGE SQL: A Change Detection System for Unordered XML documents. University of Missiouri-Rolla, Rolla (2005)Google Scholar
  15. 15.
    Viyanon, W., Madria, S.: A System for Detecting XML Similarity in Content and Structure Using Relational Database. In: 18th ACM International Conference on Information and Knowledge Management (ACM CIKM 2009), pp. 1197–1206 (2009)Google Scholar
  16. 16.
    Viyanon, W., Madria, S.: XML-SIM: Structure and Content Semantic Similarity Detection using Keys. In: Proceeding of the 8th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2009), pp. 1183–1200 (2009)Google Scholar
  17. 17.
    Viyanon, W., Madria, S.K., Bhowmick, S.S.: XML Data Integration Based on Content and Structure Similarity Using Keys. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 484–493. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Weis, M.: Fuzzy Duplicate Detection on XML Data. In: Proceedings of VLDB 2005 PhD Workshop, p. 11 (2005)Google Scholar
  19. 19.
    XML Version of DBLP (n.d.), (retrieved May 2006)
  20. 20.
    Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach to storage and retrieval of XML documents using relational databases. ACM Transactions on Internet Technology 1(1), 110–141 (2001)CrossRefGoogle Scholar
  21. 21.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 1245 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Waraporn Viyanon
    • 1
  • Sanjay K. Madria
    • 1
  1. 1.Department of Computer ScienceMissouri University of Science and TechnologyRollaUSA

Personalised recommendations