Advertisement

Save Up to 99% of Your Time in Mapping Validation

  • Vincenzo Maltese
  • Fausto Giunchiglia
  • Aliaksandr Autayeu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)

Abstract

Identifying semantic correspondences between different vocabularies has been recognized as a fundamental step towards achieving interoperability. Several manual and automatic techniques have been recently proposed. Fully manual approaches are very precise, but extremely costly. Conversely, automatic approaches tend to fail when domain specific background knowledge is needed. Consequently, they typically require a manual validation step. Yet, when the number of computed correspondences is very large, the validation phase can be very expensive. In order to reduce the problems above, we propose to compute the minimal set of correspondences, that we call the minimal mapping, which are sufficient to compute all the other ones. We show that by concentrating on such correspondences we can save up to 99% of the manual checks required for validation.

Keywords

Interoperability minimal mappings mapping validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shvaiko, P., Euzenat, J.: Ontology Matching. Springer, New York (2007)zbMATHGoogle Scholar
  2. 2.
    Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding Classifications into Lightweight Ontologies. Journal of Data Semantics 8, 57–81 (2006)zbMATHGoogle Scholar
  3. 3.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Discovering missing background knowledge in ontology matching. In: Proc. of ECAI 2006, pp. 382–386 (2006)Google Scholar
  4. 4.
    Giunchiglia, F., Maltese, V., Autayeu, A.: Computing minimal mappings. At the 4th Ontology Matching Workshop at the ISWC 2009 (2009)Google Scholar
  5. 5.
    Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings between schemas. In: Proc. of SIGCHI Conference on Human Factors in Computing Systems (2005)Google Scholar
  6. 6.
    Falconer, S., Storey, M.: A cognitive support framework for ontology mapping. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 114–127. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Halevy, A.: Why your data won’t mix. ACM Queue 3(8), 50–58 (2005)CrossRefGoogle Scholar
  8. 8.
    Katifory, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods - a survey. ACM Comput. Surv. 39(4), Article No. 10 (2007)Google Scholar
  9. 9.
    Ranganathan, S.R.: The Colon Classification. In: Artandi, S. (ed.) Rutgers Series on Systems for the Intellectual Organization of Information, vol. IV. Graduate School of Library Science, Rutgers University, New Brunswick, NJ (1965)Google Scholar
  10. 10.
    Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. In: LNCS, S. (ed.) Encyclopedia of Database Systems (2008)Google Scholar
  11. 11.
    Giunchiglia, F., Dutta, B., Maltese, V.: Faceted lightweight ontologies. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 36–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Giunchiglia, F., Soergel, D., Maltese, V., Bertacco, A.: Mapping large-scale Knowledge Organization Systems (2009)Google Scholar
  13. 13.
    Shvaiko, P., Euzenat, J.: Ten Challenges for Ontology Matching. In: Proc. of the 7th Int. Conference on Ontologies, Databases, and Applications of Semantics, ODBASE (2008)Google Scholar
  14. 14.
    Shvaiko, P., Giunchiglia, F., da Silva, P.P., McGuinness, D.L.: Web Explanations for Semantic Heterogeneity Discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 303–317. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Koch, T., Neuroth, H., Day, M.: Renardus: Cross-browsing European subject gateways via a common classification system (DDC). In: McIlwaine, I.C. (ed.) Proc. of the IFLA Satellite Meeting on Subject Retrieval in a Networked Environment, pp. 25–33 (2003)Google Scholar
  16. 16.
    Vizine-Goetz, D., Hickey, C., Houghton, A., Thompson, R.: Vocabulary Mapping for Terminology Services. Journal of Digital Information 4(4), Article No. 272 (2004)Google Scholar
  17. 17.
    Whitehead, C.: Mapping LCSH into Thesauri: the AAT Model. In: Beyond the Book: Extending MARC for Subject Access, p. 81 (1990)Google Scholar
  18. 18.
    O’Neill, E., Chan, L.: FAST (Faceted Application for Subject Technology): A Simplified LCSH-based Vocabulary. In: World Library and Information Congress: 69th IFLA General Conference and Council, Berlin, August 1-9 (2003)Google Scholar
  19. 19.
    Nicholson, D., Dawson, A., Shiri, A.: HILT: A pilot terminology mapping service with a DDC spine. Cataloging & Classification Quarterly 42(3/4), 187–200 (2006)CrossRefGoogle Scholar
  20. 20.
    Lauser, B., Johannsen, G., Caracciolo, C., Keizer, J., van Hage, W.R., Mayr, P.: Comparing human and automatic thesaurus mapping approaches in the agricultural domain. In: Proc. Int’l Conf. on Dublin Core and Metadata Applications (2008)Google Scholar
  21. 21.
    Avesani, P., Giunchiglia, F., Yatskevich, M.: A Large Scale Taxonomy Mapping Evaluation. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 67–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: algorithms and implementation. Journal on Data Semantics IX (2007)Google Scholar
  23. 23.
    Stuckenschmidt, H., Serafini, L., Wache, H.: Reasoning about Ontology Mappings. In: Proc. of the ECAI 2006 Workshop on Contextual Representation and Reasoning (2006)Google Scholar
  24. 24.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Improving automatically created map-pings using logical reasoning. In: Proc. of the 1st International Workshop on Ontology Matching OM 2006, CEUR Workshop Proceedings, vol. 225 (2006)Google Scholar
  25. 25.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping revision. Journal of Logic and Computation (2008)Google Scholar
  26. 26.
    Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from Peer Sources. Journal on Data Semantics, 153–184Google Scholar
  27. 27.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: algorithms and implementation. Journal on Data Semantics IX (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vincenzo Maltese
    • 1
  • Fausto Giunchiglia
    • 1
  • Aliaksandr Autayeu
    • 1
  1. 1.DISIUniversità di TrentoTrentoItaly

Personalised recommendations