Expressing and Managing Reactivity in the Semantic Web

  • Elsa Tovar
  • María-Esther Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


Ontological knowledge and reasoning provide the basis to define the semantics and static properties of Web resources. However, in existing approaches data reactivity is encoded in a different formalism by using rules, and the integration of ontologies and rules is not always natural or user-friendly. In this paper we present an alternative approach to represent active knowledge in ontologies. First, the ACTION formalism, in which events are categorized as ontological concepts, is proposed. Events are used in conjunction with classes, properties and instances during reasoning tasks and query answering. ACTION ontologies are processed within the REACTIVE framework. The REACTIVE reasoning and query engine supports the discovery tasks required to identify the effects of a given set of fired events. Additionally, an optimization strategy named IMR (Intersection of Magic Rewritings) is implemented. IMR identifies the events and properties that need to be considered multiple times and constructs the minimal set of rules that will produce the required result. The expressiveness of the ACTION formalism was empirically studied as well as the performance of the optimization and evaluation strategies. Initial experimental results suggest that ACTION is more expressive than rule-based formalisms; in addition, the REACTIVE engine in conjunction with IMR strategies reduce execution time to at least 50% of the execution time of traditional strategies.


Active Property Active Knowledge Query Evaluation Reactive Behavior SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alferes, J.J., Amador, R., Kärger, P., Olmedilla, D.: Towards reactive semantic web policies: Advanced agent control for the semantic web. In: ISWC (Posters & Demos) (2008)Google Scholar
  2. 2.
    Bailey, J.: Transformation and reaction rules for data on the web. In: ADC 2005: Proceedings of the 16th Australasian Database Conference, Darlinghurst, Australia, pp. 17–23. Australian Computer Society, Inc. (2005)Google Scholar
  3. 3.
    Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Implement Logic Programs. In: PODS, pp. 1–15 (1986)Google Scholar
  4. 4.
    Behrends, E., Fritzen, O., May, W., Schenk, F.: Embedding Event Algebras and Process for ECA Rules for the Semantic Web. Fundam. Inform. 82(3), 237–263 (2008)zbMATHGoogle Scholar
  5. 5.
    Biletskiy, Y., Hirtle, D., Vorochek, O.: Toward the Identification and Elimination of Semantic Conflicts for the Integration of RuleML-based Ontologies. In: CSWWS, pp. 135–142 (2006)Google Scholar
  6. 6.
    Bonatti, P.A., Kärger, P., Olmedilla, D.: Reactive policies for the semantic web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bonifati, A., Ceri, S., Paraboschi, S.: Active rules for XML: A new paradigm for E-services. VLDB J. 10(1), 39–47 (2001)zbMATHGoogle Scholar
  8. 8.
    Bonifati, A., Paraboschi, S.: Active XQuery. In: Web Dynamics, pp. 249–274 (2004)Google Scholar
  9. 9.
    Braga, D., Campi, A., Martinenghi, D., Raffio, A.: ActiveXQBE: A Visual Paradigm for Triggers over XML Data. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 865–875. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Brézillon, P.: Context in artificial intelligence: I. a survey of the literature. Computers and Artificial Intelligence 18(4) (1999)Google Scholar
  11. 11.
    Bry, F., Eckert, M., Grallert, H., Patranjan, P.-L.: Evolution of Distributed Web Data: An Application of the Reactive Language XChange. In: ICDE, pp. 1517–1518 (2007)Google Scholar
  12. 12.
    Cohen, E.: Estimating the Size of the Transitive Closure in Linear Time. In: FOCS, pp. 190–200 (1994)Google Scholar
  13. 13.
    Fox, M., Gruninger, M.: On Ontologies and Enterprise Modelling. The AI Magazine, 109–121 (1997)Google Scholar
  14. 14.
    Gruninger, M., Fox, M.: The logic of enterprise modelling (1995)Google Scholar
  15. 15.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web Sem. 3(2-3), 158–182 (2005)CrossRefGoogle Scholar
  16. 16.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Handbook of Philosophical Logic, pp. 497–604. MIT Press, Cambridge (1984)CrossRefGoogle Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission (May 21, 2004),
  18. 18.
    Huang, Z., Schlobach, S., van Harmelen, F., Casellas, N., Casanovas, P.: Dynamic aspects of opjk legal ontology. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 113–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Levene, M., Poulovassilis, A.: Special issue on Web dynamics. Computer Networks 50(10), 1425–1429 (2006)CrossRefGoogle Scholar
  20. 20.
    Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering 21, 1218–1232 (2009)CrossRefGoogle Scholar
  21. 21.
    Morgenstern, M.: Active Databases as a Paradigm for Enhanced Computing Environments. In: VLDB, pp. 34–42 (1983)Google Scholar
  22. 22.
    O’Connor, M., Shankar, R., Das, A.: An Ontology-Driven Mediator for Querying Time-Oriented Biomedical Data. In: CBMS 2006: Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems, Washington, DC, USA, pp. 264–269. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  23. 23.
    Poulovassilis, A., Papamarkos, G., Wood, P.T.: Event-Condition-Action Rule Languages for the Semantic web. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 855–864. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Ruckhaus, E., Ruiz, E., Vidal, M.: Query Evaluation and Optimization in the Semantic Web. In: TPLP (2008)Google Scholar
  25. 25.
    Tovar, E.L., Vidal, M.-E.: Magic Rewritings for Efficiently Processing Reactivity on Web Ontologies. In: OTM Conferences, vol. (2), pp. 1338–1354 (2008)Google Scholar
  26. 26.
    Xing, W., Corcho, O., Goble, C., Dikaiakos, M.: Active Ontology: An Information Integration Approach for Highly Dynamic Information Sources. In: ESWC (June 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elsa Tovar
    • 1
    • 2
  • María-Esther Vidal
    • 1
  1. 1.Universidad Simón BolívarCaracasVenezuela
  2. 2.Universidad de CaraboboVenezuela

Personalised recommendations