Advertisement

Abstract

The GRASIM (Graph-Aided Similarity calculation) algorithm is designed to solve the problem of ontology-based data matching. We subdivide the matching problem into the ones of restructuring a graph (or a network) and calculating the shortest path between two sub-graphs (or sub-networks). It uses Semantic Decision Tables (SDTs) for storing semantically rich configuration information of the graph. This paper presents an evaluation methodology and the evaluation results while choosing Dijkstra’s algorithm to calculate the shortest paths. The tests have been executed with an actual use case of eLearning and training in British Telecom (the Amsterdam branch).

Keywords

GRASIM algorithm ontology-based data matching Semantic Decision Table DOGMA ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhola, H.S.: Evaluating “Literacy for development” projects, programs and campaigns: Evaluation planning, design and implementation, and utilization of evaluation results. Hamburg, Germany: UNESCO Institute for Education; DSE [German Foundation for International Development], 306 pages (1990) Google Scholar
  2. 2.
    Blundell, R., Costa Dias, M.: Evaluation methods for non-experimental data. Fiscal Studies 21(4), 427–468 (2000)CrossRefGoogle Scholar
  3. 3.
    CDC: Developing Process Evaluation Questions, At the National Center for Chronic Disease Prevention and Health Promotion, Healthy Youth, Program Evaluation Resources (2009), http://www.cdc.gov/healthyyouth/evaluation/resources.html
  4. 4.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004) ISBN 978-3-540-21999-6CrossRefGoogle Scholar
  6. 6.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on System Science and Cybernetics SSC -4(2) (1968)Google Scholar
  7. 7.
    Johnson-Laird, P.N., Byrne, R.M.J., Schaeken, W.: Prepositional Reasoning by Model. Psychological Review, 99(3), 418 (1992) ISSN: 0033-295XCrossRefGoogle Scholar
  8. 8.
    Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast Nearest Neighbor Search in Medical Databases. In: International Conference on Very Large Databases (VLDB), India, pp. 215–226 (1996)Google Scholar
  9. 9.
    Patton, M.Q.: Qualitative Research and Evaluation Methods, 3rd edn. Sage Publications, Inc., London (2002) ISBN 0-7619-1971-6Google Scholar
  10. 10.
    Spyns, P., Tang, Y., Meersman, R.: An Ontology Engineering Methodology for DOGMA. Journal of Applied Ontology 3(1-2), 13–39 (2008); special issue on Ontological Foundations for Conceptual Modeling, Guizzardi, G., Halpin, T. (eds.)Google Scholar
  11. 11.
    Stufflebeam, D.L., Madaus, G.F., Kellaghan, T.: Utilization-Focused Evaluation. In: Evaluation in Education and Human Services, 2nd edn., vol. 49, pp. 425–438. Springer, Netherlands (2006)Google Scholar
  12. 12.
    Tang, Y.: Semantic Decision Tables - A New, Promising and Practical Way of Organizing Your Business Semantics with Existing Decision Making Tools. LAP LAMBERT Academic Publishing AG & Co. KG, Saarbrucken (2010) ISBN 978-3-8383-3791-3Google Scholar
  13. 13.
    Venkateswaran, J., Kahveci, T., Camoglu, O.: Finding Data Broadness Via Generalized Nearest Neighbors. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 645–663. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yan Tang
    • 1
  1. 1.VUB STARLab 10G731Vrije Universiteit BrusselElesene BrusselsBelgium

Personalised recommendations