A Hybrid Approach to Constructing Tag Hierarchies

  • Geir Solskinnsbakk
  • Jon Atle Gulla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


Folksonomies are becoming increasingly popular. They contain large amounts of data which can be mined and utilized for many tasks like visualization, browsing, information retrieval etc. An inherent problem of folksonomies is the lack of structure. In this paper we present an unsupervised approach for generating such structure based on a combination of association rule mining and the underlying tagged material. Using the underlying tagged material we generate a semantic representation of each tag. The semantic representation of the tags is an integral component of the structure generated. The experiment presented in this paper shows promising results with tag structures that correspond well with human judgment.


Association Rule Semantic Representation Cosine Similarity Association Rule Mining Textual Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vander Wal, T.: Folksonomy coinage and definition, (accessed March 2010)
  2. 2.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems, InfoLab Technical Report, Stanford (2006)Google Scholar
  4. 4.
    Benz, D., Hotho, A., Stützer, S., Stumme, G.: Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference, Raleigh, NC, USA (2010)Google Scholar
  5. 5.
    Zhou, T.C., King, I.: Automobile, Car, and BMW: Horizontal and Hierarchical Approach in Social Tagging Systems. In: Conference on Information and Knowledge Management, Proceeding of the 2nd ACM Workshop on Social Web Search and Mining, Hong Kong, China (2009)Google Scholar
  6. 6.
    Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., et al. (eds.) ESWC 2007. LNCS (LNAI), vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Laniado, D., Eynard, D., Colombetti, M.: Using WordNet to turn a folksonomy into a hierarchy of concepts. In: Proceedings of SWAP 2007, the 4th Italian Semantic Web Workshop, CEUR Workshop Proceedings, Bari, Italy, December 18-20 (2007),
  9. 9.
    Schwarzkopf, E., Heckmann, D., Dengler, D., Kröner, A.: Mining the Structure of Tag Spaces for User Modeling. In: Workshop on Data Mining for User Modeling (International Conference on User Modeling 2007) (2007)Google Scholar
  10. 10.
    Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining Association Rules in Folksonomies, Data Science and Classification. In: Proc. of the 10th IFCS Conf., Studies in Classification, Data Analysis, and Knowledge Organization (2006)Google Scholar
  11. 11.
    Lin, H., Davis, J., Zhou, Y.: An Integrated Apporoach to Extracting Ontological Structures from Folksonomies. In: Arayo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 654–668. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Solskinnsbakk, G., Gulla, J.A.: Ontological Profiles in Enterprise Search. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 302–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can Social Bookmarking Improve Web Search? In: First ACM International Conference on Web Search and Data Mining (WSDM 2008), Stanford, CA, February 11-12 (2008)Google Scholar
  14. 14.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)Google Scholar
  15. 15.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th International Conference on Very Large Databases (September 1994)Google Scholar
  16. 16.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  17. 17.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  18. 18.
    Artiles, J., Sekine, S.: Tagged and Cleaned Wikipedia (TC Wikipedia), (accessed December 2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Geir Solskinnsbakk
    • 1
  • Jon Atle Gulla
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations