Advertisement

A Context-Based Model for the Interpretation of Polysemous Terms

  • Chrisa Tsinaraki
  • Yannis Velegrakis
  • Nadzeya Kiyavitskaya
  • John Mylopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)

Abstract

The problem of polysemy involves having terms, such as “truck”, that refer to multiple concepts in different contexts; and conversely, having the same concept referred to with different names in different contexts. Contexts may be defined along different dimensions, such as language (Italian, English, French, ...), domain (Philosophy, Computer Science, Physics, ...), time (Ancient Greece, 20th century, ...) etc. Given a conceptual model M (aka ontology), a context C and a query Q we motivate and propose algorithms for interpreting all the terms of the query with respect to M and C. We also define and solve the inverse problem: given a set of concepts S which are part of the answer to query Q and a context C, we propose algorithms for choosing terms for all the concepts in S. To illustrate the framework, we use a case study involving a history ontology whose elements are named differently depending on the time period and language of the query.

Keywords

Polysemy Context Ontology Multilingualism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong, X., Halevy, A.: Indexing dataspaces. In: Proc. of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 43–54 (June 11- 14, 2007)Google Scholar
  2. 2.
    Bolchini, C., Schreiber, F.A., Tanca, L.: A methodology for a very small data base design. Information Systems 32(1), 61–82 (2007)CrossRefGoogle Scholar
  3. 3.
    The Wikipedia Free Encyclopedia, http://www.wikipedia.org
  4. 4.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5/2, 199–220 (1993)CrossRefGoogle Scholar
  5. 5.
    Frege, G.: The Foundations of Arithmetic (EN Transl. by J.L.Austin), 2nd revised edn. (1884/1980)Google Scholar
  6. 6.
    Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gregory, M.: Aspects of varieties differentiation. Journal of Linguistics 3, 177–197 (1967)CrossRefGoogle Scholar
  8. 8.
    Bykau, S., Kiyavitskaya, N., Tsinaraki, C., Velegrakis, Y.: Bridging the gap between heterogeneous and semantically diverse content of different disciplines. In: Proc. of the 2010 DEXA Workshop (FlexDBIST) (August 30 - September 4, 2010)Google Scholar
  9. 9.
    Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information spaces. In: Proc. of the 2005 ACM SIGMOD Int. Conf. on Management of Data, pp. 85–96. ACM, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Rizzolo, F., Velegrakis, Y., Mylopoulos, J., Bykau, S.: Modeling concept evolution: A historical perspective. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 331–345. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Presa, A., Velegrakis, Y., Rizzolo, F., Bykau, S.: Modeling associations through intensional attributes. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 315–330. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Bud, R.: Biotechnology in the twentieth century. Social Studies of Science 21, 415–457 (1991)CrossRefGoogle Scholar
  13. 13.
    Segev, A., Gal, A.: Egovernment policy evaluation support using multilingual ontologies. In: Proc. of 1st Int. Conf. on Interoperability of eGovernment Services (eGovInterop 2005) (February 23-24, 2005)Google Scholar
  14. 14.
    Kerremans, K., Temmerman, R.: Towards multilingual, termontological support in ontology engineering. In: Proc. of Termino 2004, Workshop on Terminology (2004)Google Scholar
  15. 15.
    Nichols, E., Bond, F., Tanaka, T., Sanae, F., Flickinger, D.: Multilingual ontology acquisition from multiple mrds. In: Proc. of 2nd Workshop on Ontology Learning and Population (OLP2), pp. 10–17 (2006)Google Scholar
  16. 16.
    Yeh, J.F., Wu, C.H., Chen, M.J., Yu, L.C.: Automated alignment and extraction of bilingual ontology for cross-language domain-specific applications. International Journal of Computational Linguistics & Chinese Language Processing 10(1), 35–52 (2005)Google Scholar
  17. 17.
    Ajani, G., Boella, G., Lesmo, L., Mazzei, A., Rossi, P.: Multilingual conceptual dictionaries based on ontologies. In: Proc. of V Legislative XML Workshop, pp. 1–14. European Press, Academic Publishing (June 2006)Google Scholar
  18. 18.
    Trojahn, C., Quaresma, P., Vieira, R.: Framework for multilingual ontology mapping. In: Proc. 6th Edition of the Language Resources and Evaluation Conference (LREC 2008). European Language Resources Association (ELRA) (2008)Google Scholar
  19. 19.
    Almeida, J.J., Simoes, A.: T2o recycling thesauri into a multilingual ontology. In: Calzolari, N., Choukri, K., Gangemi, A., Maegaard, B., Mariani, J., Odjik, J., Tapias, D. (eds.) Proc. of the 5th Int. Conf. on Language Resources and Evaluation (LREC 2006), pp. 1466–1471 (May 22-28, 2006)Google Scholar
  20. 20.
    Pazienza, M.T., Stellato, A.: An environment for semi-automatic annotation of ontological knowledge with linguistic content. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 11–14. Springer, Heidelberg (2006)Google Scholar
  21. 21.
    Espinoza, M., Perez, A.G., Mena, E.: Enriching an ontology with multilingual information. In: Proc. of 5th European Semantic Web Conference (ECSW 2008), pp. 333–347 (2008)Google Scholar
  22. 22.
    De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in ontology engineering: a formal approach. Journal on Data Semantics VIII, 26–56 (2007)zbMATHGoogle Scholar
  23. 23.
    Magnini, B., Cavagli, G.: Integrating subject field codes into wordnet. In: Proceedings of LREC 2000, 2nd International Conference on Language Resources and Evaluation, pp. 1413–1418 (2000)Google Scholar
  24. 24.
    Stavrakas, Y., Gergatsoulis, M.: Multidimensional semistructured data: Representing context-dependent information on the web. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 183–199. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Ram, S., Park, J.: Semantic conflict resolution ontology (scrol): An ontology for detecting and resolving data and schema-level semantic conflicts. Transactions on Knowledge and Data Engineering (TKDE) 16(21), 189–202 (2004)CrossRefGoogle Scholar
  26. 26.
    Marcu, D.: The rhetorical parsing of unrestricted texts: A surface-based approach. Computational Linguistics 26(3), 395–448 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chrisa Tsinaraki
    • 1
  • Yannis Velegrakis
    • 1
  • Nadzeya Kiyavitskaya
    • 1
  • John Mylopoulos
    • 1
  1. 1.Department of Information Engineering and Computer Science (DISI)University of TrentoPovoItaly

Personalised recommendations