Advertisement

Semantic Similarity Model for Risk Assessment in Forming Cloud Computing SLAs

  • Omar Hussain
  • Hai Dong
  • Jaipal Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)

Abstract

Cloud computing has enabled users to access various resources and applications as a service and in return pay the provider only for the time for which they are used. Service Level Agreements (SLA) are formed between the user and provider to ensure that the required services and applications are delivered as expected. With the increase of public cloud providers, challenges such as availability, reliability, security, privacy and transactional risk demand detailed assessment during the formation of SLAs. This paper focuses on one sub-category of transactional risk while forming SLAs: namely, performance risk. We argue that performance risk assessment should be done by the user before entering into an SLA with a service provider. We propose to measure performance risk according to the specific context and assessment criteria with the aid of a semantic similarity model for the SLA requirement being negotiated in a cloud computing environment. We show through simulations that the performance risk analysis is more accurate using semantic similarity matching compared with analysis without semantic similarity matching.

Keywords

Performance Risk Service Level Agreement Cloud Computing Context Assessment Criteria Semantic Similarity Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud Security Issues. In: Proceedings of the 2009 IEEE International Conference on Services Computing, pp. 517–520. IEEE Computer Society, Bangalore (2009)CrossRefGoogle Scholar
  2. 2.
    Comellas, J.O.F., Presa, I.G., Fernández, J.G.: SLA-driven Elastic Cloud Hosting Provider. In: Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, pp. 111–118. IEEE Computer Society, Pisa (2010)Google Scholar
  3. 3.
    Nurmela, T., Kutvonen, L.: Service Level Agreement Management in Federated Virtual Organizations. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 62–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Pearson, S., Charlesworth, A.: Accountability as a Way Forward for Privacy Protection in the Cloud. In: Cloud Computing, pp. 131–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Dillon, T., Wu, C., Chang, E.: Cloud Computing: Issues and Challenges. In: Proceedings on the 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 27–33. IEEE Computer Society, Perth (2010)Google Scholar
  6. 6.
    Fitó, J.O., Guitart, J.: Introducing Risk Management into Cloud Computing. Barcelona Supercomputing Center and Technical University of Catalonia, Barcelona, Spain (2010)Google Scholar
  7. 7.
    AssessGrid Consortium.: D4.1 Advanced Risk Assessment. In: Carlsson, C., Weissmann, O. (eds.): Assess Grid Deliverable (2008)Google Scholar
  8. 8.
    ISO Guide 73: Risk Management Vocabulary (2009), http://www.iso.org/iso/cataloguedetail?csnumber=44651
  9. 9.
    ISO 31000: Risk management - Principles and guidelines (2009), http://www.iso.org/iso/cataloguedetail?csnumber=43170
  10. 10.
    Aberer, K., Despotovic, Z.: Managing trust in a Peer-2-Peer Information System. In: ACM (ed.): Proceedings of the Tenth International Conference on Information and Knowledge Management (CIKM 2001), Atlanta, Georgia, USA, pp. 310–317 (2001) Google Scholar
  11. 11.
    Zheng, X., Wu, Z., Chen, H., Mao, Y.: A Scalable Probabilistic Approach to Trust Evaluation. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 423–438. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jøsang, A., Keser, C., Dimitrakos, T.: Can We Manage Trust? In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hassell, L.: Affect and Trust. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 131–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Pearson, S., Mont, M.C., Crane, S.: Persistent and Dynamic Trust: Analysis and the Related Impact of Trusted Platforms. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 355–363. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Wong, D.S., Lin, K.-J., Varadharajan, V.: Evaluating transaction trust and risk levels in peer-to-peer e-commerce environments. Information Systems and E-Business Management 6, 25–48 (2008)CrossRefGoogle Scholar
  16. 16.
    Hussain, O.K., Chang, E., Hussain, F.K., Dillon, T.S.: A methodology to quantify failure for risk-based decision support system in digital business ecosystems. Data & Knowledge Engineering 63, 597–621 (2007)CrossRefGoogle Scholar
  17. 17.
    Chang, E., Dillon, T., Hussain, F.K.: Trust and Reputation for Service-Oriented Environments. John Wiley & Sons, Ltd., West Sussex (2006)CrossRefGoogle Scholar
  18. 18.
    Sowa, J.F.: Semantic Networks. In: Shapiro, S.C. (ed.) Encyclopaedia of Artificial Intelligence. Wiley, Chichester (1992)Google Scholar
  19. 19.
    Dong, H., Hussain, F.K., Chang, E.: A hybrid concept similarity measure model for ontology environment. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009, pp. 848–857. Springer, Vilamoura (2009)Google Scholar
  20. 20.
    Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1995)CrossRefGoogle Scholar
  21. 21.
    Dong, H., Hussain, F.K., Chang, E.: A context-aware semantic similarity model for ontology environments. Concurrency and Computation: Practice and Experience (in Press) Google Scholar
  22. 22.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on Semantic Nets. IEEE Transactions on Systems, Man and Cybernetics 19, 17–30 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Omar Hussain
    • 1
  • Hai Dong
    • 1
  • Jaipal Singh
    • 1
  1. 1.Digital Ecosystems and Business Intelligence InstituteCurtin University of TechnologyPerthAustralia

Personalised recommendations