Analysis of the Performance-Influencing Factors of Virtualization Platforms

  • Nikolaus Huber
  • Marcel von Quast
  • Fabian Brosig
  • Samuel Kounev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6427)


Nowadays, virtualization solutions are gaining increasing importance. By enabling the sharing of physical resources, thus making resource usage more efficient, they promise energy and cost savings. Additionally, virtualization is the key enabling technology for Cloud Computing and server consolidation. However, the effects of sharing resources on system performance are not yet well-understood. This makes performance prediction and performance management of services deployed in such dynamic systems very challenging. Because of the large variety of virtualization solutions, a generic approach to predict the performance influences of virtualization platforms is highly desirable. In this paper, we present a hierarchical model capturing the major performance-relevant factors of virtualization platforms. We then propose a general methodology to quantify the influence of the identified factors based on an empirical approach using benchmarks. Finally, we present a case study of Citrix XenServer 5.5, a state-of-the-art virtualization platform.


Virtualization Modeling Benchmarking Performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86 virtualization. In: Proceedings of ASPLOS (2006)Google Scholar
  2. 2.
    Apparao, P., Iyer, R., Zhang, X., Newell, D., Adelmeyer, T.: Characterization & Analysis of a Server Consolidation Benchmark. In: VEE 2008: Proceedings of the 4th Int. Conference on Virtual Execution Environments (2008)Google Scholar
  3. 3.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003: Proceedings of the 19th Symposium on Operating Systems Principle (2003)Google Scholar
  4. 4.
    Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley, Reading (2000)zbMATHGoogle Scholar
  5. 5.
    Descartes Research Group (June 2010),
  6. 6.
    IDC. Virtualization Market Accelerates Out of the Recession as Users Adopt ”Virtualize First” Mentality, According to IDC (April 2010)Google Scholar
  7. 7.
    IT world, The IDG Network. Gartner’s data on energy consumption, virtualization, cloud (2008),
  8. 8.
    Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., Newell, D.: VM3: Measuring, modeling and managing VM shared resources. Computer Networks 53(17), 2873–2887 (2009)CrossRefGoogle Scholar
  9. 9.
    Kounev, S., Brosig, F., Huber, N., Reussner, R.: Towards self-aware performance and resource management in modern service-oriented systems. In: Proceedings of the 7th IEEE International Conference on Services Computing (2010)Google Scholar
  10. 10.
    Menascé, D.A.: Virtualization: Concepts, applications, and performance modeling. In: Int. CMG Conference, pp. 407–414 (2005)Google Scholar
  11. 11.
    Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Capacity Planning and Performance Modeling - From Mainframes to Client-Server Systems. P.-H. (1994)Google Scholar
  12. 12.
    Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.G.: Performance evaluation of virtualization technologies for server consolidation. HP Labs Tec. Report (2007)Google Scholar
  13. 13.
    Parziale, L., Alves, E.L., Dow, E.M., Egeler, K., Herne, J.J., Jordan, C., Naveen, E.P., Pattabhiraman, M.S., Smith, K.: Introduction to the New Mainframe: z/VM Basics. IBM Redbooks (2007)Google Scholar
  14. 14.
    Quétier, B., Néri, V., Cappello, F.: Scalability Comparison of Four Host Virtualization Tools. Jounal on Grid Computing 5(1), 83–98 (2007)CrossRefGoogle Scholar
  15. 15.
    Rosenblum, M., Garfinkel, T.: Virtual machine monitors: current technology and future trends. Computer 38(5), 39–47 (2005)CrossRefGoogle Scholar
  16. 16.
    Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. SIGOPS Oper. Syst. Rev. 41(3), 275–287 (2007)CrossRefGoogle Scholar
  17. 17.
    Tickoo, O., Iyer, R., Illikkal, R., Newell, D.: Modeling virtual machine performance: Challenges and approaches. In: HotMetrics (2009)Google Scholar
  18. 18.
    Vallee, G., Naughton, T., Ong, C.E.H., Scott, S.L.: System-level virtualization for high performance computing. In: Proc. of PDP (2008)Google Scholar
  19. 19.
    VMware. A Performance Comparison of Hypervisors (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nikolaus Huber
    • 1
  • Marcel von Quast
    • 1
  • Fabian Brosig
    • 1
  • Samuel Kounev
    • 1
  1. 1.Karlsruhe Institute of TechnologyChair for Software Design and QualityKarlsruheGermany

Personalised recommendations