Skip to main content

Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces

  • Conference paper
Graph Theoretic Concepts in Computer Science (WG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6410))

Included in the following conference series:

Abstract

Θ k -graphs are geometric graphs that appear in the context of graph navigation. The shortest-path metric of these graphs is known to approximate the Euclidean complete graph up to a factor depending on the cone number k and the dimension of the space.

TD-Delaunay graphs, a.k.a. triangular-distance Delaunay triangulations, introduced by Chew, have been shown to be plane 2-spanners of the 2D Euclidean complete graph, i.e., the distance in the TD-Delaunay graph between any two points is no more than twice the distance in the plane.

Orthogonal surfaces are geometric objects defined from independent sets of points of the Euclidean space. Orthogonal surfaces are well studied in combinatorics (orders, integer programming) and in algebra. From orthogonal surfaces, geometric graphs, called geodesic embeddings can be built.

In this paper, we introduce a specific subgraph of the Θ6-graph defined in the 2D Euclidean space, namely the half −Θ6-graph, composed of the even-cone edges of the Θ6-graph. Our main contribution is to show that these graphs are exactly the TD-Delaunay graphs, and are strongly connected to the geodesic embeddings of orthogonal surfaces of coplanar points in the 3D Euclidean space.

Using these new bridges between these three fields, we establish:

  • Every Θ6-graph is the union of two spanning TD-Delaunay graphs. In particular, Θ6-graphs are 2-spanners of the Euclidean graph, and the bound of 2 on the stretch factor is the best possible. It was not known that Θ6-graphs are t-spanners for some constant t, and Θ7-graphs were only known to be t-spanners for t ≈ 7.562.

  • Every plane triangulation is TD-Delaunay realizable, i.e., every combinatorial plane graph for which all its interior faces are triangles is the TD-Delaunay graph of some point set in the plane. Such realizability property does not hold for classical Delaunay triangulations.

All authors are partially supported by the ANR project “ALADDIN” and the INRIA project “CÉPAGE”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane Spanners of Maximum Degree Six. In: Gavoille, C. (ed.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010)

    Google Scholar 

  2. Bose, P., Carmi, P., Collette, S., Smid, M.: On the Stretch Factor of Convex Delaunay Graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 656–667. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bose, P., Carmi, P., Couture, M.: Spanners of Additively Weighted Point Sets. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M.H.M., Wuhrer, S.: Pi/2-Angle Yao Graphs are Spanners. CoRR abs/1001.2913 (2010)

    Google Scholar 

  5. Bose, P., Devroye, L., Löffler, M., Snoeyink, J., Verma, V.: The spanning ratio of the Delaunay triangulation is greater than π/2. In: Proc. of 21st Canadian Conf. on Computational Geometry, CCCG 2009 (2009)

    Google Scholar 

  6. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems (2009) (submitted)

    Google Scholar 

  7. Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences 39(2), 205–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chew, P., Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: Proc. 1st Ann. Symp. on Computational Geometry, SCG 1985, pp. 235–244 (1985)

    Google Scholar 

  9. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proc. 19th Ann. ACM Symp. on Theory of Computing, STOC 1987, pp. 56–65 (1987)

    Google Scholar 

  10. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Mathematics 161(1-3), 63–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dillencourt, M.B.: Toughness and Delaunay Triangulations. Discrete and Computational Geometry 5(1), 575–601 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete & Computational Geometry 5(4), 399–407 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumitrescu, A., Ebbers-Baumann, A., Grne, A., Klein, R., Rote, G.: On the geometric dilation of closed curves, graphs, and point sets. Computational Geometry: Theory and Applications 36(1), 16–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felsner, S.: Geometric graphs and arrangements. Vieweg (2004)

    Google Scholar 

  15. Felsner, S., Zickfeld, F.: Schnyder Woods and Orthogonal Surfaces. Discrete and Computational Geometry 40(1), 103–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fischer, M., Lukovszki, T., Ziegler, M.: Geometric searching in walkthrough animations with weak spanners in real time. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 163–174. Springer, Heidelberg (1998)

    Google Scholar 

  17. Goodman, J.E., O’Rourke, J. (eds.): Handbook of discrete and computational geometry. CRC Press, Inc., Boca Raton (1997)

    MATH  Google Scholar 

  18. Hiroshima, T., Miyamoto, Y., Sugihara, K.: Another Proof of Polynomial-Time Recognizability of Delaunay Graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E83-A(4), 627–638 (2000)

    Google Scholar 

  19. Hodgson, C.D., Rivin, I., Smith, W.D.: A Characterization of Convex Hyperbolic Polyhedra and of Convex Polyhedra Inscribed in the Sphere. Bulletin of the American Mathematical Society 27(3), 251–256 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proc. 26th Ann. Conf. on Comp. Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 277–286 (1999)

    Google Scholar 

  21. Karavelas, M.I., Yvinec, M.: Dynamic Additively Weighted Voronoi Diagrams in 2D. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 586–598. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  23. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7(1), 13–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, D.T., Drysdale, R.L.: Generalization of Voronoi Diagrams in the Plane. SIAM Journal on Computing 10(1), 73–87 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenhart, W., Liotta, G.: Drawable and forbidden minimum weight triangulations. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 1–12. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  26. Lillis, K.M., Pemmaraju, S.V.: On the Efficiency of a Local Iterative Algorithm to Compute Delaunay Realizations. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 69–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Miller, E.: Planar Graphs as Minimal Resolutions of Trivariate Monomial Ideals. Documenta Mathematica 7, 43–90 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  29. O’Rourke, J.: The Yao Graph Y 6 is a Spanner. CoRR abs/1003.3713 (2010)

    Google Scholar 

  30. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  31. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph. In: 3rd Canadian Conference on Computational Geometry (CCCG), pp. 207–210 (1991)

    Google Scholar 

  33. Schnyder, W.: Planar Graphs and Poset Dimension. Order 5, 323–343 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D. (2010). Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16926-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16925-0

  • Online ISBN: 978-3-642-16926-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics