Skip to main content

Neurophysiologische Diagnostik

  • Chapter
NeuroIntensiv

Zusammenfassung

Die klinische Elektroneurophysiologie umfasst die Elektroenzephalographie (EEG), evozierte Potenziale (EP), die Elektroneurographie (NLG) und Elektromyographie (EMG). Diese Untersuchungsmethoden haben vielfältige Indikationen in der Diagnostik und dem Monitoring schwerkranker Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zu 5.1

  1. AminoffMJ (2005) Electrodiagnosis in clinical neurology. Livingstone, New York

    Google Scholar 

  2. BischoffC, Dengler R, Hopf HC (2008) EMG, NLG. Thieme, Stuttgart, New York

    Google Scholar 

  3. Buchner H, Noth J (2005) Evozierte Potenziale, Neurovegetative Diagnostik, Okulographie - Methodik und klinische Anwendungen. Thieme, Stuttgart, New York

    Google Scholar 

  4. Guérit JM, Fischer C, Facco E, Tinuper P, Murri L, Ronne- Engström E, Nuwer M (1999) Standards of clinical practice of EEG and EPs in comatose and other unresponsive states. In: Deuschl G, Eisen A (eds) Recommendations for the practice of clinical neurophysiology: Guidelines of the international federation of clinical neurophysiology Electroencephalography and clinical neurophysiology, Suppl. 52

    Google Scholar 

  5. Hermans G, De Jonghe B, Bruyninckx F, Van Den Berghe G (2008) Clinical review: Critical illness polyneuropathy and myopathy. Crit Care 12:238ff

    Article  Google Scholar 

  6. Ludin HP (1997) Praktische Elektromyographie. Thieme, Stuttgart, New York

    Google Scholar 

  7. Neundörfer B (2002) EEG-Fibel. Urban & Fischer, München

    Google Scholar 

  8. Stöhr M, Dichgans J, Buettner UW, Hess CW (2005) Evozierte Potenziale. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  9. Stöhr M (2004) Klinische Elektromyographie und Neurographie - Lehrbuch und Atlas. Kohlhammer, Stuttgart

    Google Scholar 

  10. Zschoke S, Hansen HC (2002) Klinische Elektroenzephalographie. Springer, Berlin

    Google Scholar 

Literatur

  1. Allendörfer J, Görtler M, von Reutern GM, for the Neurosonology in Acute Ischemic Stroke Study Group (2006) Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 5:835–840

    Article  Google Scholar 

  2. Arning C, Widder B, von Reutern GM, Stiegler H, Görtler M (2010) Revison of DEGUM ultrasound criteria for grading internal carotid artery stenoses and transfer to NASCET measurement. Ultraschall Med 31:251–257

    Article  PubMed  CAS  Google Scholar 

  3. Baumgartner RW, Mattle HP, Schroth G (1999) Assessment of ≥50 % and . Stroke 30:87–92

    Article  PubMed  CAS  Google Scholar 

  4. Brandt T, Knauth M, Wildermuth S, Winter R, von Kummer R, Sartor K, Hacke W (1999) CT angiography and Doppler sonography for emergency assessment in acute basilar artery ischemia. Stroke 30:606–612

    Article  PubMed  CAS  Google Scholar 

  5. de Bray JM, Daugy J, Legrand MS, Pulci S (1998) Acute middle cerebral artery stroke and transcranial Doppler sonography. Eur J Ultrasound 7:31–36

    Article  PubMed  Google Scholar 

  6. Demchuk AM, Christou I, Wein TH, Felberg RA, MalkoffM, Grotta JC, Alexandrov AV (2000) Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 10:1–12

    PubMed  CAS  Google Scholar 

  7. Droste DW, Lakemeier S, Wichter T, Stypmann J, Dittrich R, Ritter M, Moeller M, Freund M, Ringelstein EB (2002) Optimizing the technique of contrast transcranial Doppler ultrasound in the detection of right-to-left shunts. Stroke 33:2211–2216

    Article  PubMed  Google Scholar 

  8. Gahn G, Gerber J, Hallmeyer S, et al. (2000) Contrast enhanced transcranial colour-coded duplex sonography in stroke patients with limited bone window. AJNR 21:509–514

    PubMed  CAS  Google Scholar 

  9. Gahn G, von Kummer R (2001) Ultrasound in acute stroke: a review. Neuroradiology 43:702–711

    Article  PubMed  CAS  Google Scholar 

  10. Gerriets T, Seidel G, Fiss I, Modrau B, Kaps M (1999) Contrastenhanced transcranial color-coded duplex sonography: efficiency and validity. Neurology 52:1133–1137

    PubMed  CAS  Google Scholar 

  11. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M (1999) Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 52:45–49

    PubMed  CAS  Google Scholar 

  12. Görtler M, Baeumer M, Kross R, Blaser T, Lutze G, Jost S, Wallesch CW (1999) Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke 30:66–69

    Article  Google Scholar 

  13. Kenton AR, Martin PJ, Abbott RJ, Moody AR (1997) Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke. Stroke 28:1601–1606

    Article  PubMed  CAS  Google Scholar 

  14. Klötzsch C, Janssen G, Berlit P (1994) Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale: experiences with 111 patients. Neurology 44:1603–1606

    PubMed  Google Scholar 

  15. Mäurer M, Shambal S, Berg D, Woydt M, Hofmann E, Georgiadis D, Lindner A, Becker G (1998) Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 29:2563–2567

    Article  PubMed  Google Scholar 

  16. Mariak Z, Krejza J, Swiercz M, Kordecki K, Lewko J (2002) Accuracy of transcranial color Doppler ultrasonography in the diagnosis of middle cerebral artery spasm determined by receiver operating characteristic analysis. J Neurosurg 96:323–330

    Article  PubMed  Google Scholar 

  17. Markus HS, Droste DW, Kaps M, Larrue V, Lees KR, Siebler M, Ringelstein EB (2005) Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 111:2233–2240,

    Article  PubMed  CAS  Google Scholar 

  18. Schulte-Altedorneburg G, Droste DW, Popa V, Wohlgemuth WA, Kellermann M, Nabavi DG, Csiba L, Ringelstein EB (2000) Visualization of the basilar artery by transcranial color-coded duplex sonography : comparison with postmortem results. Stroke 31:1123–1127

    Article  PubMed  CAS  Google Scholar 

  19. Sturzenegger M, Mattle HP, Rivoir A, Baumgartner RW (1995) Ultrasound findings in carotid artery dissection: analysis of 43 patients. Neurology 45:691–698

    PubMed  CAS  Google Scholar 

  20. Wijdicks EF (2001) The diagnosis of brain death. N Engl J Med 344:1215–1221

    Article  PubMed  CAS  Google Scholar 

Zu 5.3

  1. AschoffA, Steiner T (1999) Messung von Hirndruck und Perfusionsdruck. In: Schwab S, Krieger D, Müllges W, Hahmann G, Hacke W (Hrsg) Neurologische Intensivmedizin. Springer, Heidelberg, New-York, S 261–303

    Google Scholar 

  2. Asgeirsson B,Grände PO, et al. (1994) A new therapy of posttrauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260–267

    Article  PubMed  CAS  Google Scholar 

  3. Brawanski A, Gaab MR (1981) Intracranial pressure gradients in the presence of various intracranial space-occupying lesions. Advanc Neurosurg 9:355–362

    Article  Google Scholar 

  4. Bullock MR, Chesnut RM (2007) Guidelines for the management of severe traumatic brain injury. Brain Trauma Foundation and American Association of Neurological Surgeons, New York

    Google Scholar 

  5. Cremer OL, van Dijk GW, et al. (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33:2207–2213

    Article  PubMed  Google Scholar 

  6. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    Article  PubMed  CAS  Google Scholar 

  7. Grände PO (2006) “The Lund Concept” for the treatment of severe head trauma - physiological principles and clinical application. Intensive Care Med 32:1475–1484

    Article  PubMed  Google Scholar 

  8. Holloway KL, Barnes T, et al. (1996) Ventriculostomy Infections: The Effect of Monitoring Duration and Catheter Exchange in 584 Patients. J Neurosurg 85:419–424

    Article  PubMed  CAS  Google Scholar 

  9. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand 36 (Suppl 149):1–193

    CAS  Google Scholar 

  10. Pfeifer G (1980) Über die gegenseitige Beeinflussung von intrakraniellem Druck und Körperkreislauf unter Einbeziehung der Aktivität vegetativer Nerven. Medizinische Habilitationsschrift, Universität Bonn

    Google Scholar 

  11. Piek J (2006) Intrakranieller Druck - zerebraler Perfusionsdruck. In: Piek J, Unterberg A (Hrsg) Grundlagen Neurochirurgischer Intensivmedizin. Zuckschwerdt, München - Wien - New York, S 38–50

    Google Scholar 

  12. Piek J, Plewe P, et al. (1988) Intrahemispheric gradients of brain tissue pressure in patients with brain tumours. Acta Neurochir (Wien) 93:129–135

    Article  CAS  Google Scholar 

  13. Richard KE (1978) Long-term measuring of ventricular CSF pressure with tumors of the posterior fossa. Adv Neurosurg 5:179–187

    Article  Google Scholar 

  14. Rosner MJ, Rosner SD, et al. (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurgery 83:949–962

    Article  CAS  Google Scholar 

  15. Schwab S, AschoffA, et al. (1996) The value of intracrainial pressure monitoring in acute hemispheric stroke. Neurology 47:393–398

    PubMed  CAS  Google Scholar 

  16. Steiner LA, Andrews PJD (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97:26–38

    Article  PubMed  CAS  Google Scholar 

  17. Unterberg A, Kiening K, et al. (1993) Long-term observations of intracranial pressure after severe head injury. The phenomenon of secondary rise of intracranial pressure. Neurosurgery 32:17

    Article  PubMed  CAS  Google Scholar 

Zu 5.4

  1. Al-Rawi PG, Ming-Yuan T, et al. (2010) Hypertonic saline in patients with poor-grade subarachnoid hemorrhage improves cerebral blood flow, brain tissue oxygen, and pH. Stroke 41(1):122–128

    Article  PubMed  CAS  Google Scholar 

  2. Beppu T, Kamada K, et al. (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol 58(1):47–52

    Article  PubMed  Google Scholar 

  3. Brain Trauma Foundation, et al. (2007) Guidelines for the Management of Severe Traumatic Brain Injury, 3rd Edition J Neurotrauma 24:S1–106

    Article  Google Scholar 

  4. Brawanski A, Faltermeier R, et al. (2002) Comparison of nearinfrared spectroscopy and tissue p(O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 22(5):605–611

    Article  PubMed  Google Scholar 

  5. Charbel FT, Du X, et al. (2000) Brain tissue PO(2), PCO(2), and pH during cerebral vasospasm. Surg Neurol 54(6):432–437; discussion 438

    Article  PubMed  CAS  Google Scholar 

  6. Clark JC Jr. (1956) Monitor and control of blood and tissue oxygen tension. Transaction of the Society of Art internal Organs 2:41–48

    Google Scholar 

  7. Dings J, Meixensberger J, et al. (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43(5):1082–1095

    Article  PubMed  CAS  Google Scholar 

  8. Doppenberg EM, Zauner A, et al. (1998) Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl (Wien) 71:166–169

    CAS  Google Scholar 

  9. Hartl R, Bardt TF, et al. (1997) Mannitol decreases ICP but does not improve brain-tissue pO2 in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl (Wien) 70:40–42

    CAS  Google Scholar 

  10. Hoelper BM, Hofmann E, et al. (2003) Transluminal balloon angioplasty improves brain tissue oxygenation and metabolism in severe vasospasm after aneurysmal subarachnoid hemorrhage: case report. Neurosurgery 52(4):970–974; discussion 974–976

    Article  PubMed  Google Scholar 

  11. Jaeger M, Schuhmann MU, et al. (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34:1783–1788

    Article  PubMed  Google Scholar 

  12. Kett-White R, Hutchinson PJ, et al. (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50(6):1213–1221; discussion 1221–1222

    PubMed  Google Scholar 

  13. Kiening KL, Unterberg AW, et al. (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 vs. jugular vein oxygen saturation. J Neurosurg 85:751–757

    Article  PubMed  CAS  Google Scholar 

  14. Leniger-Follert E, Lübbers DW, et al. (1975) Regulation of local tissue pO2 of the brain cortex at different arterial O2-pressures. Pflügers Archiv 359:81–95

    Article  PubMed  CAS  Google Scholar 

  15. Longhi L, Valeriani V, et al. (2002) Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir (Suppl) 81:315–317

    CAS  Google Scholar 

  16. Maloney-Wilskey E, Gracias V, et al. (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: A systematic review. Crit Care Med 37:2057–2063

    Article  Google Scholar 

  17. Nortje J, Coles JP, et al. (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: Preliminary findings. Crit Care Med 36:273–282

    Article  PubMed  CAS  Google Scholar 

  18. Oddo M, Levine JM, et al. (2009) Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry 80(8):916–920

    Article  PubMed  CAS  Google Scholar 

  19. Raabe A, Beck J, et al. (2005) Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 103:974–981

    Article  PubMed  Google Scholar 

  20. Reinprecht A, Greher M, et al. (2003) Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med 31(6):1831–1838

    Article  PubMed  Google Scholar 

  21. Sakowitz O, Stover J, et al. (2007) Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma 62:292–298

    Article  PubMed  CAS  Google Scholar 

  22. Soehle M, Jaeger M, et al. (2003) Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage. Neurol Res 25(4):411–417

    Article  PubMed  Google Scholar 

  23. Steiner T, Pilz J, et al. (2001) Multimodal monitoring in middle cerebral artery stroke. Stroke 32:2500–2506

    Article  PubMed  CAS  Google Scholar 

  24. Stiefel M, Spiotta A, et al. (2005) Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103:805–811

    Article  PubMed  Google Scholar 

  25. Tisdall MM, Tachtsidis I, et al. (2008) Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg 109:424–432

    Article  PubMed  Google Scholar 

  26. Tolias C, Reinert M,et al. (2004) Normobaric hyperoxiainduced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 101:435–444

    Article  PubMed  Google Scholar 

  27. Unterberg AW, Kiening KL, et al. (1997) Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma 42(5 Suppl):S32–37

    Article  PubMed  CAS  Google Scholar 

  28. Van Den Brink WA, Haitsma IA, et al. (1998) Brain parenchyma/pO2 catheter interface: a histopathological study in the rat. J Neurotrauma 15(10):813–824

    Article  PubMed  Google Scholar 

  29. van Santbrink H, Maas AI, et al. (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38(1):21–31

    Article  PubMed  Google Scholar 

  30. Zauner A, Bullock R, et al. (1995) Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery 37(6):1168–1177

    Article  PubMed  CAS  Google Scholar 

  31. Zauner A, Doppenberg EM, et al. (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41(5):1082–1091; discussion 1091–1093

    Article  PubMed  CAS  Google Scholar 

Zu 5.5

  1. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198:1264–1267

    Article  PubMed  CAS  Google Scholar 

  2. Obrig H, Villringer A. Beyond the visible-imaging the human brain with light. J Cereb Blood Flow Metab 2003;23:1–18

    Article  PubMed  Google Scholar 

  3. Keller E, Mudra R. Measurement of cerebral blood flow with near infrared spectroscopy and indocyanine green dye dilution. Curr Med Imaging Rev 2007;3:139–150

    Article  Google Scholar 

  4. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009;103 (Suppl 1):i3–13

    Article  PubMed  Google Scholar 

  5. Highton D, Elwell C, Smith M. Noninvasive cerebral oximetry: Is there light at the end of the tunnel? Curr Opin Anaesthesiol 2010;23:576–581

    Article  PubMed  Google Scholar 

  6. Kirkpatrick PJ, Smielewski P, Whitfield PC, Czosnyka M, Menon D, Pickard JD. An observational study of near-infrared spectroscopy during carotid endarterectomy. J Neurosurg 1995;82:756–763

    Article  PubMed  CAS  Google Scholar 

  7. Dunham CM, Ransom KJ, Flowers LL, Siegal JD, Kohli CM. Cerebral hypoxia in severely brain-injured patients is associated with admission glasgow coma scale score, computed tomographic severity, cerebral perfusion pressure, and survival. J Trauma 2004;56:482–489; discussion 489–491

    Article  PubMed  Google Scholar 

  8. Al-Rawi PG, Smielewski P, Kirkpatrick PJ. Evaluation of a nearinfrared spectrometer (niro 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 2001;32:2492–2500

    Article  PubMed  CAS  Google Scholar 

  9. Al-Rawi PG, Kirkpatrick PJ. Tissue oxygen index: Thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 2006;37:2720–2725

    Article  PubMed  Google Scholar 

  10. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ. The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 2009;38:539–545

    Article  PubMed  CAS  Google Scholar 

  11. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth Analg 2007;104:51–58

    Article  PubMed  Google Scholar 

  12. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM, 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 2009;87:36–44; discussion 44–35

    Article  PubMed  Google Scholar 

  13. Nagashima H, Okudera H, Kobayashi S, Iwashita T. Monitoring of cerebral hemodynamics using near-infrared spectroscopy during local intraarterial thrombolysis: Case report. Surg Neurol 1998;49:420–424

    Article  PubMed  CAS  Google Scholar 

  14. Damian MS, Schlosser R. Bilateral near infrared spectroscopy in space-occupying middle cerebral artery stroke. Neurocrit Care. 2007;6:165–173

    Article  PubMed  CAS  Google Scholar 

  15. Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick P. Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 1997;28:331–338

    Article  PubMed  CAS  Google Scholar 

  16. Terborg C, Gora F, Weiller C, Rother J. Reduced vasomotor reactivity in cerebral microangiopathy: A study with nearinfrared spectroscopy and transcranial doppler sonography. Stroke 2000;31:924–929

    Article  PubMed  CAS  Google Scholar 

  17. Terborg C, Birkner T, Schack B, Weiller C, Rother J. Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device. Cerebrovasc Dis 2003;16:36–41

    Article  PubMed  CAS  Google Scholar 

  18. Vernieri F, Silvestrini M, Tibuzzi F, Pasqualetti P, Altamura C, Passarelli F, Matteis M, Rossini PM. Hemoglobin oxygen saturation as a marker of cerebral hemodynamics in carotid artery occlusion: An integrated transcranial doppler and nearinfrared spectroscopy study. J Neurol 2006;253:1459–1465

    Article  PubMed  Google Scholar 

  19. Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, Pickard JD, Smielewski P. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41:1963–1968

    Google Scholar 

  20. Keller E, Nadler A, Imhof HG, Niederer P, Roth P, Y. Yonekawa. New methods for monitoring cerebral oxygenation and hemodynamics in patients with subarachnoid hemorrhage. Acta Neurochir (Suppl) 2002;82:87–92

    CAS  Google Scholar 

  21. Keller E, Ishihara H, Nadler A, Niederer P, Seifert B, Yonekawa Y, Frei K. Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection. J Neurosci Methods 2002;117:23–31

    Article  PubMed  Google Scholar 

  22. Roberts I, Fallon P, Kirkham FJ, Lloyd Thomas A, Cooper C, Maynard R, Elliot M, Edwards AD. Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green. Lancet 1993;342:1425

    Article  PubMed  CAS  Google Scholar 

  23. Kuebler WM, Sckell A, Habler O, Kleen M, Kuhnle GE, Welte M, Messmer K, Goetz AE. Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green. J Cereb Blood Flow Metab 1998;18:445–456

    Article  PubMed  CAS  Google Scholar 

  24. Wagner BP, Gertsch S, Amann RA, Pfenninger J. Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Med 2003;29:196–200

    PubMed  Google Scholar 

  25. Terborg C, Bramer S, Harscher S, Simon M, Witte OW. Bedside assessment of cerebral perfusion reductions in patients with acute ischemic stroke by near-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry 2003;75:38–42

    Google Scholar 

  26. Terborg C, Groschel K, Petrovitch A, Ringer T, Schnaudigel S, Witte OW, Kastrup A. Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by nearinfrared spectroscopy. Eur Neurol 2009;62:338–343

    Article  PubMed  CAS  Google Scholar 

  27. Keller E, Nadler A, Alkhadi H, Kollias S, Yonekawa Y, Niederer P. Noninvasive measurement of regional cerebral blood flow and regional cerebral bood volume by near infrared spectroscopy and indocynaine green dye dilution. Neuroimage 2003;20:828–839

    Article  PubMed  Google Scholar 

  28. Steinbrink J, Wabnitz H, Obrig H, Villringer A, Rinneberg H. Determining changes in nir absorption using a layered model of the human head. Phys Med Biol 2001;46:879–896

    Article  PubMed  CAS  Google Scholar 

  29. Keller E, Froehlich J, Muroi C, Sikorski C, Muser M. Neuromonitoring in intensive care: A new brain tissue probe for combined monitoring of intracranial pressure (icp) cerebral blood flow (cbf ) and oxygenation. Acta Neurochir (Suppl) 2011;110:217–220

    Article  CAS  Google Scholar 

  30. Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, Yoshikawa E, Futatsubashi M, Ueda Y, Okada H, Yamashita Y. Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: Correlation with simultaneous positron emission tomography measurements. Neuroimage 2006;29:697–705

    Article  PubMed  Google Scholar 

  31. Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 2009;40:1820–1826

    Article  PubMed  Google Scholar 

  32. Kakihana Y, Matsunaga A, Yasuda T, Imabayashi T, Kanmura Y, Tamura M. Brain oxymetry in the operating room: Current status and future directions with particular regard to cytochrome oxidase. J Biomed Opt 2008;13:033001

    Article  PubMed  CAS  Google Scholar 

Zu 5.6

  1. Berger C, Schabitz WR, Georgiadis D, Steiner T, AschoffA, Schwab S (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33:519–524

    Article  PubMed  CAS  Google Scholar 

  2. Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

    Article  PubMed  CAS  Google Scholar 

  3. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, Neveling M, Brinker G, Heiss WD (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34:2152–2158

    Article  PubMed  Google Scholar 

  4. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644

    Article  PubMed  CAS  Google Scholar 

  5. Feuerstein D, Manning A, Hashemi P, Bhatia R, Fabricius M, Tolias C, Pahl C, Ervine M, Strong AJ, Boutelle MG (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355

    Article  PubMed  CAS  Google Scholar 

  6. Helbok R, Schmidt MJ, Kurtz P, Hanafy KA, Fernandez L, Stuart MR, Presciutti M, Ostapkovitch ND, Conolly ES, Lee K, Badjatia N, Mayer SA, Claassen J (2010) Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care 12:317–323

    Article  PubMed  CAS  Google Scholar 

  7. Hutchinson PJ, al-Rawi PG, O'Connell MT, Gupta AK, Maskell LB, Hutchinson DB, Pickard JD, Kirkpatrick PJ (2000) On-line monitoring of substrate delivery and brain metabolism in head injury. Acta Neurochir Suppl 76:431–435

    PubMed  CAS  Google Scholar 

  8. Miller C, Vespa PM, McArthur DL, Hirt D, Etchepare M (2009) Frameless Stereotactic Aspiration and Thrombolysis of Deep Intracerebral Hemorrhage is associated with reduced levels of extracellular cerebral glutamate and unchanged lactate pyruvate ratios. Neurocrit Care 6:22–29

    Article  Google Scholar 

  9. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184; discussion 1184–1185

    Article  PubMed  CAS  Google Scholar 

  10. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  PubMed  CAS  Google Scholar 

  11. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, Hillered L (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84:606–616

    Article  PubMed  CAS  Google Scholar 

  12. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070

    Article  PubMed  Google Scholar 

  13. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, Unterberg A (2003) Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 34:1382–1388

    Article  PubMed  CAS  Google Scholar 

  14. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O`Conell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ (2011) Cerebral extracellular chemistry ans outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

Zu 5.7

  1. Axel L (1980) Cerebral blood flow determination by rapidsequence computed tomography: theoretical analysis. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  2. Gur D, Yonas H, Jackson DL, et al. (1985) Measurement of cerebral blood flow during xenon inhalation as measured by the microspheres method. Stroke 16:871–874

    Article  PubMed  CAS  Google Scholar 

  3. Martin NA, Patwardhan RV, Alexander MJ, et al. (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87:9–19

    Article  PubMed  CAS  Google Scholar 

  4. Mazziotta JC, Huang SC, Phelps ME, et al. (1985) A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 5:70–78

    Article  PubMed  CAS  Google Scholar 

  5. Miller JD (1987) Normal and increased intracranial pressure. In: Miller JD (ed) Northfield‘s Surgery of the Central Nervous System, 2nd ed. Blackwell, Edinburgh, chap 2

    Google Scholar 

  6. Obrist WD, Wilkinson WE (1990) Regional cerebral blood flow measurement in humans by xenon-133 clearance. Cerebrovasc Brain Metab Rev 2:283–327

    PubMed  CAS  Google Scholar 

  7. Oertel M, Preiss M, Puille M, Bauer R (2007) How to get Xenon-133 into solution for blood flow studies. Nucl Med Commun 28:327–329

    Article  PubMed  Google Scholar 

  8. Seidel G, Meairs S (2009) Ultrasound contrast agents in ischemic stroke. Cerebrovasc Dis 27 (Suppl 2):25–39

    Article  PubMed  Google Scholar 

  9. Soustiel JF, Glenn TC, Vespa P, et al. (2003) Assessment of cerebral blood flow by means of blood-flow-volume measurement in the interal carotid artery: comparative study with a 133xenon clearance technique. Stroke 34:1876–1888

    Article  PubMed  CAS  Google Scholar 

  10. Tomandl BF, Klotz E, Handschu R, et al. (2003) Comprehensive Imaging of Ischemic Stroke with Multisection CT. Radiographics 23:565–592

    Article  PubMed  Google Scholar 

  11. Vajkoczy P, Horn P, Thome C, et al. (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98:1227–1234

    Article  PubMed  Google Scholar 

  12. Wintermark M, Sessay M, Barbier E, et al. (2005) Comparitive Overview of Brain Perfusion Imaging Techniques. J Neuroradiol 32:294–314

    Article  PubMed  CAS  Google Scholar 

  13. Wintermark M, Sincic R, Sridhar D, Chien JD (2008) Cerebral perfusion CT: technique and clinical applications. J Neuroradiol 35:253–260

    Article  PubMed  CAS  Google Scholar 

  14. Yonas H, Gur D, Good BC, et al. (1985) Stable xenon CT blood flow mapping for evaluation of patients with extracranialintracranial bypass surgery. J Neurosurg 62:324–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwab, S., Schellinger, P., Werner, C., Unterberg, A., Hacke, W. (2012). Neurophysiologische Diagnostik. In: Schwab, S., Schellinger, P., Werner, C., Unterberg, A., Hacke, W. (eds) NeuroIntensiv. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16911-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16911-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16910-6

  • Online ISBN: 978-3-642-16911-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics