The Compressible Navier–Stokes System

  • Hajer BahouriEmail author
  • Jean-Yves Chemin
  • Raphaël Danchin
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 343)


In Chapter 10 we present a more complicated system of partial differential equations coming from fluid mechanics, the so-called barotropic compressible Navier–Stokes equations. Those equations are of mixed hyperbolic-parabolic type. We show how we may take advantage of the results of Chapter 3 and the techniques introduced in Chapter 2 so as to obtain local (or global) unique solutions with critical regularity. The last part of this chapter is dedicated to the study of the low Mach number limit for this system. It is shown that under appropriate assumptions on the data, the limit solution satisfies the incompressible Navier–Stokes system studied in Chapter 5.


Stokes Equation Global Existence Strong Solution Besov Space Local Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hajer Bahouri
    • 1
    Email author
  • Jean-Yves Chemin
    • 2
  • Raphaël Danchin
    • 3
  1. 1.Départment de Mathématiques, Faculté des Sciences de Tunis, Campus UniversitaireUniversité de Tunis El ManarTunisTunisia
  2. 2.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie CurieParis Cedex 05France
  3. 3.Centre de Mathématiques, Faculté de Sciences et TechnologieUniversité Paris XII-Val de MarneCréteil CedexFrance

Personalised recommendations