Skip to main content

Differential Addition in Generalized Edwards Coordinates

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6434))

Abstract

We use two parametrizations of points on elliptic curves in generalized Edwards form x 2 + y 2 = c 2 (1 + d x 2 y 2) that omit the x-coordinate. The first parametrization leads to a differential addition formula that can be computed using 6M + 4S, a doubling formula using 1M + 4S and a tripling formula using 4M + 7S. The second one yields a differential addition formula that can be computed using 5M + 2S and a doubling formula using 5S. All formulas apply also for the case c ≠ 1 and arbitrary curve parameter d. This generalizes formulas from the literature for the special case c = 1 or d being a square in the ground field.

For both parametrizations the formula for recovering the missing X-coordinate is also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards Curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves (2008)

    Google Scholar 

  3. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztas, S., Lu, H.-F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 183–194. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Castryck, W., Galbraith, S., Farashahi, R.R.: Efficient arithmetic on elliptic curves using a mixed Edwards-Montgomery representation. Cryptology ePrint Archive, Report 2008/218 (2008)

    Google Scholar 

  7. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography; written with Roberto M. Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen and Frederik Vercauteren. Discrete Mathematics and its Applications. Chapman & Hall/CRC (2006)

    Google Scholar 

  8. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society 44(3), 393–422 (July 2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. Finite Fields and Their Applications 15(2), 246–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Information Technology Laboratory. FIPS 186-3: Digital Signature Standard (DSS). Technical report, National Institute of Standards and Technology (June 2009)

    Google Scholar 

  11. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystem from a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 126–141. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Justus, B., Loebenberger, D. (2010). Differential Addition in Generalized Edwards Coordinates. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds) Advances in Information and Computer Security. IWSEC 2010. Lecture Notes in Computer Science, vol 6434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16825-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16825-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16824-6

  • Online ISBN: 978-3-642-16825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics