Skip to main content

Modelling of Piezoceramic Patches for Augmenting Modal Structural Models with Flat Actuator Devices

  • Chapter
Robotic Systems for Handling and Assembly

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 67))

  • 1884 Accesses

Abstract

This section discusses the modelling of piezoceramic patches, which are used as structural actuators in highly accelerated light weight robot structures to achieve short cycle times in assembly tasks. Such devices in combination with suitable control algorithms can increase the structural damping significantly. The subcomponents of parallel structures, augmented with such actuator devices, can be modelled with the Finite Element method. After a modal decomposition, the mass and stiffness coefficients can be adjusted by a special so-called modal correction method for the applied flat piezoceramic devices in combination with their electromechanical coupling. The underlying electromechanical triangle element is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Basic formulations and linear problems, vol. 1. McGraw-Hill, London (1989)

    Google Scholar 

  2. Tzou, H.: Piezoelectric Shells. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  3. Zemcik, R., Rolfes, R., Rose, M., Teßmer, J.: High-performance four-node shell element with piezoelectric coupling for the analysis of smart laminated structures. International Journal for Numerical Methods in Engineering 70(8), 934–961 (2007)

    Article  MATH  Google Scholar 

  4. Mesecke-Rischmann, S.: Modellierung von flachen piezoelektrischen Schalen mit zuverlässigen finiten Elementen, Dissertation, Helmut Schmidt Universität, Hamburg, Germany (2004)

    Google Scholar 

  5. Rose, M.: Modale Korrekturmethoden für die Platzierung von Piezokeramischen Modulen. Technical Report IB 131-2004/43, German Aerospace Center (DLR) (2004)

    Google Scholar 

  6. Dietz, S.: Vibration and fatigue analysis of vehicle systems using component modes. In: Fortschritt-Berichte VDI, vol. 12, pp. 1–136. VDI Verlag, Düsseldorf (1999)

    Google Scholar 

  7. Clark, R., Saunders, W., Gibbs, G.: Adaptive Structures. John Wiley & Sons, New York (1998)

    Google Scholar 

  8. Preumont, A.: Vibration Control of Active Structures. Kluwer Academic Publishers, London (1997)

    MATH  Google Scholar 

  9. Algermissen, S., Sinapius, M.: Robust Gain Scheduling for Smart-Structures in Parallel Robots. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 159–174. Springer, Heidelberg (2010)

    Google Scholar 

  10. Argyris, H.: Die Methode der Finiten Elemente, Germany,, vol. I. Friedr. Vieweg & Sohn, Braunschweig (1986)

    MATH  Google Scholar 

  11. Specht, B.: Modified shape functions for the three-node plate bending element passing the patch test. International Journal for Numerical Methods in Engineering 26, 705–715 (1988)

    Article  MATH  Google Scholar 

  12. Rose, M.: An advanced branch and bound method to interpolate acoustic data on structural finite element meshes. In: 13th Congress on Sound and Vibration ICSV, Vienna, Austria (2006)

    Google Scholar 

  13. Kelkar, A., Joshi, S.: Control of Nonlinear Multibody Flexible Space Structures. Springer, London (1996)

    MATH  Google Scholar 

  14. Heintze, O., Rose, M., Algermissen, S., Misol, M.: Development and experimental application of a pre-design tool for active noise and vibration reduction systems. In: Prof. of the International Symposium on Active Control of Sound and Vibration, Ottawa, Ontario, Canada, pp. 1–12 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, M. (2010). Modelling of Piezoceramic Patches for Augmenting Modal Structural Models with Flat Actuator Devices. In: Schütz, D., Wahl, F.M. (eds) Robotic Systems for Handling and Assembly. Springer Tracts in Advanced Robotics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16785-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16785-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16784-3

  • Online ISBN: 978-3-642-16785-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics