Integrated Force and Motion Control of Parallel Robots – Part 2: Constrained Space

  • Thomas Reisinger
  • Frank Wobbe
  • Michael Kolbus
  • Walter Schumacher
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 67)


Parallel robots in the context of handling and assembly benefit from their inherent high dynamics. However, their coupled nonlinear system dynamics demand for an effective control system in terms of accuracy, robustness and disturbance rejection. This paper presents a hybrid control scheme that is designed specifically to these features. The hierarchical approach encapsulates the robots dynamics on drive-level and, thus, provides the basis for effective real-time hybrid control. It is interfaced by a fully specified C 2-continuous trajectory, see [1] for detailed design. Force-torque control is derived and an analysis of controller performance during the transition to constrained motion presented. These modules form a unique, integrated control-scheme.


Force Control Torque Control Parallel Robot Trajectory Generator Task Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolbus, M., Wobbe, F., Reisinger, T., Schumacher, W.: Integrated Force and Motion Control of Parallel Robots – Unconstrained Space. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 233–252. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Hasegawa, T., Suehiro, T., Takase, K.: A model-based manipulation system with skill-based execution. IEEE Trans. Robot. Autom. 8(5), 535–544 (1992)CrossRefGoogle Scholar
  3. 3.
    Raibert, M., Craig, J.J.: Hybrid position/force control of manipulators. ASME J. of Dyn. Systems, Measurement and Control 120(2), 126–133 (1981)CrossRefGoogle Scholar
  4. 4.
    Hogan, N.: Impedance control - An approach to manipulation. I - Theory. II - Implementation. III - Applications. ASME Transactions Journal of Dynamic Systems and Measurement Control 107, 1–24 (1985)zbMATHCrossRefGoogle Scholar
  5. 5.
    Villani, L., Siciliano, B.: Robot Force Control (Kluwer International Series in Engineering & Computer Science), 1st edn. Springer, Berlin (2000) ISBN 9780792377337Google Scholar
  6. 6.
    Reisinger, T.: Kontaktregelung von Parallelrobotern auf der Basis von Aktionsprimitiven. Ph.D. thesis, TU Braunschweig (2008)Google Scholar
  7. 7.
    Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems: Analysis and Modelling, Euromech. Lecture notes in physics, pp. 1–60. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems - Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  9. 9.
    McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of contrained robots. IEEE Trans. Autom. Control 33(5), 419–426 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)zbMATHGoogle Scholar
  11. 11.
    Maaß, J., Dietrich, F., Hesselbach, J.: RCA562: Control Architectures for Parallel Kinematic Robots. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 315–331. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Assunco, J.M.V., Schumacher, W.: Hybrid force control for parallel manipulators. In: Proc. of the 11th Mediterranean Conference on Control and Automation (MED), Rhodos, Greece (2003)Google Scholar
  13. 13.
    Vukobratovic, M., Tuneski, A.: Contact control concepts in manipulation robotics: An overview. IEEE Trans. Ind. Electron. 41(1), 109–124 (1994)CrossRefGoogle Scholar
  14. 14.
    Wobbe, F., Böske, W., Schumacher, W.: Optimierte Antriebsreglerstrukturen zur Störunterdrückung. In: SPS/IPC/DRIVES 2006, Nürnberg, Germany, pp. 473–482 (2006)Google Scholar
  15. 15.
    Wobbe, F., Kolbus, M., Schumacher, W.: Continuous sliding surfaces versus classical control concepts on parallel robots. In: Proc. of the 13th IEEE IFAC International Conference on Methods and Models in Automation, Szczecin, Poland (2007)Google Scholar
  16. 16.
    Wobbe, F., Kolbus, M., Schumacher, W.: Enhanced Motion Control Concepts on Parallel Robots. In: Automation and Robotics, pp. 17–40. In Tech Education and Publishing (2008) ISBN 9783902613417Google Scholar
  17. 17.
    Kolbus, M.M., Wobbe, F., Algermissen, S., Stachera, K., Schumacher, W., Sinapius, M.: Sliding mode control of a parallel robot with robust vibration control. In: Proc. of the 9th International Conference on Motion and Vibration Control (MoViC 2008), München (2008)Google Scholar
  18. 18.
    Reisinger, T., Kolbus, M., Wobbe, F.: Hybrid position/force-control of a planar parallel robot. In: Proc. of Conf. on Problems of Automated Electrodrives, Aluschta, Ukraine, pp. 250–254 (2005)Google Scholar
  19. 19.
    Schütz, D., Budde, C., Raatz, A., Hesselbach, J.: Parallel Kinematic Structures of the SFB 562. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 109–124. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Reisinger
    • 1
  • Frank Wobbe
    • 2
  • Michael Kolbus
    • 2
  • Walter Schumacher
    • 2
  1. 1.ABB Corporate Research CenterLadenburgGermany
  2. 2.Institute of Control EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations